A How Does Anisotropy Affect the Calculation of Taylor Microscale in Turbulence?

AI Thread Summary
The Taylor microscale can be calculated for anisotropic turbulence using the modified equation that accounts for anisotropic velocity fluctuations. In cases where two velocity components are zero, the expression simplifies to λ_A = √(5ν/ε)√(v'_1²). This approach remains valid as the anisotropy affects only the magnitude of the fluctuations, not the overall formula. References for further reading include "Anisotropic Turbulence" and "Turbulence: An Introduction for Scientists and Engineers." Understanding these concepts is crucial for accurately analyzing turbulence in various applications.
rdemyan
Messages
67
Reaction score
4
TL;DR Summary
Anisotropic Taylor microscale
The Taylor microscale in isotropic turbulence is given by:
$$\lambda = \sqrt{ 15 \frac{\nu \ v'^2}{\epsilon} }$$

where v' is the root mean square of the velocity fluctuations. In general, for velocity fluctuations in three dimensions:

$$v' = \frac{1}{\sqrt{3}}\sqrt{{v'_1}^2+{v'_2}^2+{v'_3}^2}$$

So plugging this expression into the Taylor microscale equation yields:
$$\lambda = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2+{v'_2}^2+{v'_3}^2}$$

Now for isotropic turbulence

$$v'_1=v'_2=v'_3$$

So for isotropic turbulence, equation 3 (third equation in this text) yields:

$$\lambda = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{3v'_1}^2} = \sqrt{ 15 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

My question is: can I use equation 3 to calculate the Taylor microscale for anisotropic turbulence. For example if the injection of energy is highly anisotropic where ##v'_2 = v'_3=0##

$$\lambda_A = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2}=\sqrt{ 5 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

where ##λ_A## is the anisotropic Taylor microscale. Does this seem correct? Also, does anyone know of a reference where this derivation was already done?
 
Last edited:
Physics news on Phys.org


Yes, you can use equation 3 to calculate the Taylor microscale for anisotropic turbulence as long as you take into account the anisotropy in the velocity fluctuations. In your example, where ##v'_2 = v'_3=0##, the Taylor microscale would be given by:

$$\lambda_A = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2+0+0}=\sqrt{ 5 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

This is because the anisotropy in the velocity fluctuations only affects the magnitude of the velocity fluctuations, not the overall expression for the Taylor microscale.

As for references, there are many papers and textbooks that discuss the anisotropic Taylor microscale, such as "Anisotropic Turbulence" by F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, and "Turbulence: An Introduction for Scientists and Engineers" by P. A. Davidson. You can also find many research papers that use this equation to calculate the anisotropic Taylor microscale in various types of turbulence.
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Scalar and vector potentials in Coulomb gauge Assume Coulomb gauge so that $$\nabla \cdot \mathbf{A}=0.\tag{1}$$ The scalar potential ##\phi## is described by Poisson's equation $$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0}\tag{2}$$ which has the instantaneous general solution given by $$\phi(\mathbf{r},t)=\frac{1}{4\pi\varepsilon_0}\int \frac{\rho(\mathbf{r}',t)}{|\mathbf{r}-\mathbf{r}'|}d^3r'.\tag{3}$$ In Coulomb gauge the vector potential ##\mathbf{A}## is given by...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top