A How Does Anisotropy Affect the Calculation of Taylor Microscale in Turbulence?

AI Thread Summary
The Taylor microscale can be calculated for anisotropic turbulence using the modified equation that accounts for anisotropic velocity fluctuations. In cases where two velocity components are zero, the expression simplifies to λ_A = √(5ν/ε)√(v'_1²). This approach remains valid as the anisotropy affects only the magnitude of the fluctuations, not the overall formula. References for further reading include "Anisotropic Turbulence" and "Turbulence: An Introduction for Scientists and Engineers." Understanding these concepts is crucial for accurately analyzing turbulence in various applications.
rdemyan
Messages
67
Reaction score
4
TL;DR Summary
Anisotropic Taylor microscale
The Taylor microscale in isotropic turbulence is given by:
$$\lambda = \sqrt{ 15 \frac{\nu \ v'^2}{\epsilon} }$$

where v' is the root mean square of the velocity fluctuations. In general, for velocity fluctuations in three dimensions:

$$v' = \frac{1}{\sqrt{3}}\sqrt{{v'_1}^2+{v'_2}^2+{v'_3}^2}$$

So plugging this expression into the Taylor microscale equation yields:
$$\lambda = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2+{v'_2}^2+{v'_3}^2}$$

Now for isotropic turbulence

$$v'_1=v'_2=v'_3$$

So for isotropic turbulence, equation 3 (third equation in this text) yields:

$$\lambda = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{3v'_1}^2} = \sqrt{ 15 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

My question is: can I use equation 3 to calculate the Taylor microscale for anisotropic turbulence. For example if the injection of energy is highly anisotropic where ##v'_2 = v'_3=0##

$$\lambda_A = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2}=\sqrt{ 5 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

where ##λ_A## is the anisotropic Taylor microscale. Does this seem correct? Also, does anyone know of a reference where this derivation was already done?
 
Last edited:
Physics news on Phys.org


Yes, you can use equation 3 to calculate the Taylor microscale for anisotropic turbulence as long as you take into account the anisotropy in the velocity fluctuations. In your example, where ##v'_2 = v'_3=0##, the Taylor microscale would be given by:

$$\lambda_A = \sqrt{ 5 \frac{\nu}{\epsilon} }\sqrt{{v'_1}^2+0+0}=\sqrt{ 5 \frac{\nu \ {v'_1}^2}{\epsilon} }$$

This is because the anisotropy in the velocity fluctuations only affects the magnitude of the velocity fluctuations, not the overall expression for the Taylor microscale.

As for references, there are many papers and textbooks that discuss the anisotropic Taylor microscale, such as "Anisotropic Turbulence" by F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, and "Turbulence: An Introduction for Scientists and Engineers" by P. A. Davidson. You can also find many research papers that use this equation to calculate the anisotropic Taylor microscale in various types of turbulence.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top