How Does Complementary Logic Redefine Mathematical Infinity?

  • Thread starter Thread starter Organic
  • Start date Start date
  • Tags Tags
    Logic
Click For Summary
The discussion centers on the concept of Complementary Logic (CL) and its potential to redefine mathematical infinity. Critics argue that the proponent of CL fails to provide a clear logical framework, relying instead on vague assertions about its capabilities. Concerns are raised about the usefulness of a logic system that cannot derive contradictions, as contradictions are essential for evaluating assumptions in traditional logic. The conversation also touches on the relationship between mathematics and real-world applications, emphasizing the need for clarity and rigor in defining terms and concepts. Ultimately, the lack of a concrete definition for CL undermines its proposed advantages over established logical systems.
  • #211
Paradigms don't change, they shift. When someone comes up with a revolutionary new way to do things or to think about things, it's just that... a NEW way to do things or to think about things.

If, indeed, you are bringing about a paradigm shift in mathematics, you do not alter any old mathematics!
 
Physics news on Phys.org
  • #212
No theoretical system can survive without being aware to its limitations.

It means that any x output can be only a model(X) input.

Shortly speaking, x=model(X).

Math is first of all a form of theory, therefore any concept that can be used by it is only a model(CONCEPT).

For example, let us take infinity concept.

If INF is infinity itself (= actual infinity) , then inf=model(INF)=potential infinity.

Please look at this model for better understanding:
http://www.geocities.com/complementarytheory/RiemannsLimits.pdf

In this way we first of all aware to our input limitations, which are:

No input = model(EMPTINESS) = lowest limit.

No input = model(FULLNESS) = highest limit.

If we translate this to set's representation then:

{} content = model(EMPTINESS) = lowest limit.

{__} content = model(FULLNESS) = highest limit.

Between these limits ({},{__}) we can find inf=model(INF)=potential infinity, where inf has two input forms:

{.} = singleton, which is a localized element.

{.__.} = non-singleton, which is a non-localized element (connect at least two different singletons).

{.} and {._.} can appear in two basic collections:

Collection {a, b, c} is finitely many elements.

Collection {a, b, c, ...} is infinitely many elements (=inf) .

Any non-empty collection which is not a singleton, is an association between {.} and {._.}, for example:
Code:
              b   b
             {a , a}    
              .   .  
              |   | 
              |___|_
              |    
                
           
             {a , b}    
              .   .  
              |   | 
              |___|
              |

I opened a new thead for this at:

https://www.physicsforums.com/showthread.php?s=&threadid=14416
 
Last edited:

Similar threads

Replies
8
Views
7K
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 410 ·
14
Replies
410
Views
34K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 4 ·
Replies
4
Views
5K
Replies
14
Views
30K
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K