Organic
- 1,223
- 0
Matt,
1) Yes I agree that this is the redundant way to show how the columns are constructed, but:
2) You showed nothing because the three representations below are one and only one thing:
Now let us make a little redundancy diet:
and we get:
1) And we agreed the th first column is (1010101010... ) the second (110011001100..) and so on - the nth is 2^n ones, 2^n 0s, looping again and again?
2) remember how we showed you that that implies that every row has only a finite number of zeroes in it? remember how that implies the string ...01010101) with an infinite number of 0s in it is not on the list?
1) Yes I agree that this is the redundant way to show how the columns are constructed, but:
2) You showed nothing because the three representations below are one and only one thing:
Code:
{...,3,2,1,0}=Z*
2 2 2 2
^ ^ ^ ^
| | | |
v v v v
[b]{[/b]...,1,1,1,1[b]}[/b]<--> 1
...,1,1,1,0 <--> 2
...,1,1,0,1 <--> 3
...,1,1,0,0 <--> 4
...,1,0,1,1 <--> 5
...,1,0,1,0 <--> 6
...,1,0,0,1 <--> 7
...,1,0,0,0 <--> 8
...,0,1,1,1 <--> 9
...,0,1,1,0 <--> 10
...,0,1,0,1 <--> 11
...,0,1,0,0 <--> 12
...,0,0,1,1 <--> 13
...,0,0,1,0 <--> 14
...,0,0,0,1 <--> 15
...,0,0,0,0 <--> 16
...
Code:
{...,3,2,1,0}=Z*
2 2 2 2
^ ^ ^ ^
| | | |
v v v v
... [b]1[/b]-1-1-1 <--> 1
\ \ \0 <--> 2
\ 0-1 <--> 3
\ \0 <--> 4
[b]0[/b]-[b]1[/b]-1 <--> 5
\ \[b]0[/b] <--> 6
0-1 <--> 7
\0 <--> 8
... [b]0[/b]-[b]1[/b]-1-1 <--> 9
\ \ \0 <--> 10
\ [b]0[/b]-[b]1[/b] <--> 11
\ \0 <--> 12
0-1-1 <--> 13
\ \0 <--> 14
0-1 <--> 15
\0 <--> 16
...
Code:
{...,3,2,1,0}=Z*
2 2 2 2
^ ^ ^ ^
| | | |
v v v v
/1 <--> 1
1
/ \0 <--> 2
1
/\ /1 <--> 3
/ 0
/ \0 <--> 4
... [b]1[/b]
\ /1 <--> 5
\ [b]1[/b]
\/ \[b]0[/b] <--> 6
[b]0[/b]
\ /1 <--> 7
0
\0 <--> 8
/1 <--> 9
1
/ \0 <--> 10
[b]1[/b]
/\ /[b]1[/b] <--> 11
/ [b]0[/b]
/ \0 <--> 12
... [b]0[/b]
\ /1 <--> 13
\ 1
\/ \0 <--> 14
0
\ /1 <--> 15
0
\0 <--> 16
...
Last edited: