MHB How Does E Relate to Q[x]/(x²+x+1) in Complex Algebra?

  • Thread starter Thread starter mathjam0990
  • Start date Start date
  • Tags Tags
    Closed
mathjam0990
Messages
28
Reaction score
0
Let, E={a+bw : a,b in ℚ) ⊆ ℂ
w = -1/2 + [√(3)/2]*i ∈ C

Prove: E is closed under addition, subtraction, multiplication and division (by non zero elements)

Prove: E ≅ Q[x]/(x2+x+1)

Is the goal to show that for any two elements in E, all 4 operations can be performed on those two elements and the result would still be within E?

Is every element of Q[x]/(x2+x+1) in the form (a+bi)(x2+x+1) which would lead to showing why E ≅ Q[x]/(x2+x+1) ?

I'm not even sure of my statements are correct so it is hard to proceed forward. If anyone could provide a detailed answer as to how to solve this that would be most helpful. Thanks!
 
Physics news on Phys.org
The elements of $\Bbb Q[x]/\langle x^2 + x + 1\rangle$ are all cosets of the form:

$a + bx + \langle x^2 + x + 1\rangle$

This is because we can write any element of $\Bbb Q[x]$ as $q(x)(x^2 + x + 1) + r(x)$, where the degree of $r$ is less than 2, and $q(x)(x^2 + x + 1) \in \langle x^2 + x + 1\rangle$.

The above might give a hint as to what the possible isomorphism between $E$ and $\Bbb Q[x]/\langle x^2 + x + 1\rangle$ might be.

It suffices to show that $E$ is closed under subtraction and division (for non-zero elements for division). This is because:

$a+b = a-(-b)$, and $ab = \dfrac{a}{\frac{1}{b}}$

The particular complex number $\omega$ is, isn't all that important, what IS important is that:

$\omega^3 = 1$, and $\omega \neq 1$.

(Why? well it turns out that $x^2 + x + 1 = \dfrac{x^3 - 1}{x-1}$).
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K