MHB How Does Integration by Parts Differ in Solving $\int x^8 \ln x^9 \, dx$?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The discussion focuses on solving the integral $\int x^8 \ln x^9 \, dx$ using integration by parts (IBP) and substitution. One approach involves substituting $t = x^9$, transforming the integral into $\frac{1}{9} \int \ln(t) \, dt$, which is then solved using IBP. Another method suggests using $u = x^8$ and applying IBP directly, leading to the same final result. Both methods yield equivalent answers, confirming the flexibility of integration techniques. The conversation emphasizes the importance of substitution choices in simplifying complex integrals.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\Large{242.8.2.54} \\ $
solve by $u={x}^{8}$ then by IBP

$\displaystyle
I_{54}=\int{x^8}\ln{x^9} \, dx
=9\left(\dfrac{x^9\ln\left(x\right)}{9}-\dfrac{x^9}{81}\right) \\$
$u=x^8. \ \ du=8x^7 dx \ \ x=\sqrt[8]{u}$

how would IBP be any different?
 
Last edited:
Physics news on Phys.org
I believe you'd want to use the substitution

$$t=x^9,\quad\dfrac{dt}{9}=x^8\,dx$$

so the integral becomes

$$\dfrac19\int\ln(t)\,dt$$

Now, to apply IBP, use

$$u=\ln(t),\,du=\dfrac1t\,dt;\quad dv=dt,\,v=t$$

Can you proceed from there?
 
$$t=x^9,\quad\dfrac{dt}{9}=x^8\,dx \\

\dfrac19\int\ln(t)\,dt$$
IBP
$$\begin{align}
u&= \ln\left({t}\right) &dv&=dt\\
du&=\frac{1}{t}dt &v&=t&
\end{align}\\$$

$$\frac{1}{9}\left[uv-\int v \, du \right]
\implies
\frac{1}{9}\left[t \ln\left({t}\right)-\int t \frac{1}{t}dt\right]
\implies
\frac{1}{9} \left[t\ln\left({t}\right)-t\right]$$

back substitute $t=x^9$
$$\displaystyle
\frac{1}{9} \left[x^9\ln\left({x^9}\right)-x^9\right]+C$$

something ?
 
That's correct (and it's equivalent to the answer you gave in your initial post with the constant of integration added in).
 
I would have used an entirely different substitution...

$\displaystyle \begin{align*} \int{ x^8\ln{ \left( x^9 \right) } \,\mathrm{d}x } &= \int{ 9\,x^8\ln{(x)} \,\mathrm{d}x } \\ &= \int{ \frac{9\,x^9\ln{(x)}}{x}\,\mathrm{d}x } \end{align*}$

then with the substitution $\displaystyle \begin{align*} u = \ln{(x)} \implies \mathrm{d}u = \frac{1}{x}\,\mathrm{d}x \end{align*}$ we have

$\displaystyle \begin{align*} \int{ \frac{9\,x^9\ln{(x)}}{x}\,\mathrm{d}x } &= \int{ 9\,u\,\mathrm{e}^{ 9\,u }\,\mathrm{d}u } \end{align*}$

and then apply Integration by Parts.
 
karush said:
$\displaystyle I \;=\; \int{x^8}\ln{x^9} \, dx \;=\;x^9\ln x - \tfrac{1}{9}x^9 + C \\$
\text{We have: }\;I \;=\; 9\int x^8\ln x\,dx

\begin{array}{ccccccccc}<br /> u&amp;=&amp; \ln x &amp;&amp; dv &amp;=&amp; x^8dx \\<br /> du &amp;=&amp; \frac{dx}{x} &amp;&amp; v &amp;=&amp; \frac{1}{9}x^9 \end{array}

I \;=\; 9\left[\tfrac{1}{9}x^9\ln x - \tfrac{1}{9}\int x^8dx\right] \;=\; 9\left[\tfrac{1}{9}x^9\ln x - \tfrac{1}{81}x^9\right] + C

I \;=\;x^9\ln x - \tfrac{1}{9}x^9 + C
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K