How Does Rotating Polarization Work in Optics Experiments?

Click For Summary

Discussion Overview

The discussion centers on the mechanics of rotating polarization in optics experiments, specifically involving a quarter-wave plate (QWP) and a polarizing beam splitter (PBS). Participants explore the behavior of circularly polarized light upon reflection and its implications for the polarization state of the light after passing through optical components.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions the understanding of how circular polarization changes its handedness upon reflection, suggesting that it should revert to the original linear polarization state after passing through the QWP again.
  • Another participant clarifies that the incoming linearly polarized light becomes circularly polarized after passing through the QWP, and upon reflection, the helicity of the circular polarization is flipped.
  • It is noted that the reflection process involves a change in the wave vector while the angular momentum remains unchanged, leading to a reversal of the circular polarization state.
  • Participants discuss the implications of the QWP's fast axis orientation, indicating that the reflected beam interacts with the QWP differently than the incoming beam, resulting in a polarization state that is perpendicular to the original linear polarization.

Areas of Agreement / Disagreement

Participants express differing views on the behavior of circular polarization upon reflection, with some agreeing on the mechanics of helicity flipping while others remain uncertain about the implications for the final polarization state after the QWP.

Contextual Notes

There are references to external sources that provide additional context for the optical setup, which may influence the understanding of the discussed principles.

ynyin
Messages
3
Reaction score
2
In optics experiments, I often see the following optics configuration to rotate the polarization of an incident linearly-polarized laser beam. The final reflected beam has its polarization rotated by 90 degrees. My question is:
1) Between the quarter plate and the mirror( reflecting surface), the following figure indicates the handness of the circular polarization does not change when it is reflected back. But from what I learned, the polarization should change its handness while being reflected by a mirror. (see, e.g. this question: https://physics.stackexchange.com/q...se-polarization-of-circularly-polarised-light)

2) If the circular polarization changes its handness, then after the quaterplate it should become the same linear polarization as the incident laser beam, meaning that it should pass through the PBS again and not be refleted away.

Where could I be wrong in understanding its principle? Thanks!

1653082680313.png
 
  • Like
Likes   Reactions: Delta2
Science news on Phys.org
I'd need a bit more context to understand the depicted optical setup. Where is the picture from?
 
Through 2) it became clear what the picture in 1) means: You have an incoming unpolarized beam hitting a polarizing beam splitter (PBS) and use one of the beams, which now is linearly polarized. This linearly polarized light goes through a quarter-wave plate (QWP) making it circular polarized. Depending on the polarization of the used linearly polarized beam (H or V) the outgoing beam is L or R circular polarized after the QWP. The now circular polarized beam is reflected. Circular polarization means the light is in a helicity eigenstate, and a reflection flips helicity. The reason is that helicity is a pseudoscalar: Helicity is ##\vec{k} \cdot \vec{J}/|\vec{k}|##, where ##\vec{k}## is the wave vector and ##\vec{J}## the angular momentum of the electromagnetic wave. Under a reflection ##\vec{k}## flips sign (polar vector), while ##\vec{J}### doesn't (axial vector). Thus if you have a L (R) circular polarized incoming beam the relected one is R (L) polarized. Now this goes again through the QWP making it linearly polarized in the perpendicular direction than that of the before incoming beam. At the PBS it still stays in this same perpendicular direction, i.e., the entire apparatus rotates the polarization by an angle of ##\pi/2##.
 
  • Like
Likes   Reactions: ynyin
vanhees71 said:
Through 2) it became clear what the picture in 1) means: You have an incoming unpolarized beam hitting a polarizing beam splitter (PBS) and use one of the beams, which now is linearly polarized. This linearly polarized light goes through a quarter-wave plate (QWP) making it circular polarized. Depending on the polarization of the used linearly polarized beam (H or V) the outgoing beam is L or R circular polarized after the QWP. The now circular polarized beam is reflected. Circular polarization means the light is in a helicity eigenstate, and a reflection flips helicity. The reason is that helicity is a pseudoscalar: Helicity is ##\vec{k} \cdot \vec{J}/|\vec{k}|##, where ##\vec{k}## is the wave vector and ##\vec{J}## the angular momentum of the electromagnetic wave. Under a reflection ##\vec{k}## flips sign (polar vector), while ##\vec{J}### doesn't (axial vector). Thus if you have a L (R) circular polarized incoming beam the relected one is R (L) polarized. Now this goes again through the QWP making it linearly polarized in the perpendicular direction than that of the before incoming beam. At the PBS it still stays in this same perpendicular direction, i.e., the entire apparatus rotates the polarization by an angle of ##\pi/2##.
Thanks for the explanation! The flipping of the handness of the circular polarization (from L to R or R to L) is something I have thought about, and that is why I think the figure shows the circular polarization wrongly. The question now is why after QWP the linear polarization is perpendicular to that of the incoming beam. Fortunately, I got the answer from StackExchange, the key point is that the reflected beam sees the fast axis of the QWP at an angle rotated by 90 degrees w.r.t what it sees when it is incoming. Hope that also clarifies something for you.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 15 ·
Replies
15
Views
8K
  • · Replies 2 ·
Replies
2
Views
2K