I How Does Technetium-99 Appear in Red Giants Beyond the Iron Peak?

jjson775
Messages
112
Reaction score
26
TL;DR Summary
Technetium 99 was detected in a red giant in 1952. Was this produced by nuclear fusion?
Technetium 99 was detected by spectroscopy in a red giant. How did it get there if it is heavier than the “iron peak”, the upper limit for fusion?
 
Physics news on Phys.org
To add, this is called the s-process, where heavy elements in the star absorb neutrons.
 
  • Like
Likes ohwilleke and Astronuc
mfb said:
Iron/nickel is the limit where fusion releases energy. Fusion processes continue beyond that, they just don't release energy any more but need energy input.

https://en.wikipedia.org/wiki/R-process
https://en.wikipedia.org/wiki/S-process
My question arose from a straightforward problem showing how the technetium could not have been present in the star from the beginning, because of radioactive decay. To test my understanding, the technetium was formed in the star by the endoergic s-process. Elements up to the iron peak can be created by ordinary fusion. Probably an oversimplification on my part.
 
Thread 'Why is there such a difference between the total cross-section data? (simulation vs. experiment)'
Well, I'm simulating a neutron-proton scattering phase shift. The equation that I solve numerically is the Phase function method and is $$ \frac{d}{dr}[\delta_{i+1}] = \frac{2\mu}{\hbar^2}\frac{V(r)}{k^2}\sin(kr + \delta_i)$$ ##\delta_i## is the phase shift for triplet and singlet state, ##\mu## is the reduced mass for neutron-proton, ##k=\sqrt{2\mu E_{cm}/\hbar^2}## is the wave number and ##V(r)## is the potential of interaction like Yukawa, Wood-Saxon, Square well potential, etc. I first...
Back
Top