How Does the Dirac Delta Function Identity Apply in Equation (27) Derivation?

Safinaz
Messages
255
Reaction score
8
Homework Statement
May you please let me know if there an identity of a Dirac Delta function in momentum space that tells if:
Relevant Equations
##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
I need help to understand how equation (27) in this paper has been derived.

The definition of P(k) (I discarded in the question ##\eta## or the integration with respect for it) is given by (26) and the definition of h(k) and G(k) are given by Eq. (25) and Eq. (24) respectively.

In my question I defined:
##
F(k_1) = \frac{1}{\sqrt{H^2-k_1^2}} sinh (\sqrt{H^2-k_1^2} (\eta-\tilde{\eta}_1)) \frac{1}{H\tilde{\eta}_1} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_1} Y'_i Y'_j ]
##

and
##
F(k_2) = \frac{1}{\sqrt{H^2-k_2^2}} sinh (\sqrt{H^2-k_2^2} (\eta-\tilde{\eta}_2)) \frac{1}{H\tilde{\eta}_2} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_2} Y'_i Y'_j ]
##

So in (27) ##F(k_1)## and ##F(k_2)## are added while according to (26) they are multiplied , so what is the identity of ##\delta^3(k)## and ##\delta(k_1-k_2)## which lead to Eq.(27) ?

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
Safinaz said:
Relevant Equations: ##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
 
Safinaz said:
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
That explains what ##\mathbf{k}_1## and ##\mathbf{k}_2## are. It doesn't explain what ##\mathbf{k}## is in the expression for the power spectrum.

Safinaz said:
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
I have the same concern as @anuttarasammyak. There's no point trying to find some identity you think you need if what you're starting with is wrong.

I moved this thread to the advanced physics forum. Perhaps someone with expertise in gravitational waves can shed some light on your question.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top