How Does the Dirac Delta Function Identity Apply in Equation (27) Derivation?

Click For Summary
The discussion centers on understanding the derivation of equation (27) in a paper involving the Dirac delta function. Participants express confusion about the identities of the delta functions, specifically ##\delta^3(k)## and ##\delta(k_1-k_2)##, and how they relate to the equations provided. There is a concern regarding the compatibility of the left-hand side and right-hand side of the equation, particularly in relation to the definitions of ##k_1##, ##k_2##, and ##k##. The transformation from position space to momentum space via Fourier transform is noted, but clarity on the role of ##k## in the power spectrum is still lacking. Expert input from the advanced physics forum is sought to resolve these issues.
Safinaz
Messages
255
Reaction score
8
Homework Statement
May you please let me know if there an identity of a Dirac Delta function in momentum space that tells if:
Relevant Equations
##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
I need help to understand how equation (27) in this paper has been derived.

The definition of P(k) (I discarded in the question ##\eta## or the integration with respect for it) is given by (26) and the definition of h(k) and G(k) are given by Eq. (25) and Eq. (24) respectively.

In my question I defined:
##
F(k_1) = \frac{1}{\sqrt{H^2-k_1^2}} sinh (\sqrt{H^2-k_1^2} (\eta-\tilde{\eta}_1)) \frac{1}{H\tilde{\eta}_1} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_1} Y'_i Y'_j ]
##

and
##
F(k_2) = \frac{1}{\sqrt{H^2-k_2^2}} sinh (\sqrt{H^2-k_2^2} (\eta-\tilde{\eta}_2)) \frac{1}{H\tilde{\eta}_2} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_2} Y'_i Y'_j ]
##

So in (27) ##F(k_1)## and ##F(k_2)## are added while according to (26) they are multiplied , so what is the identity of ##\delta^3(k)## and ##\delta(k_1-k_2)## which lead to Eq.(27) ?

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
Safinaz said:
Relevant Equations: ##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
 
Safinaz said:
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
That explains what ##\mathbf{k}_1## and ##\mathbf{k}_2## are. It doesn't explain what ##\mathbf{k}## is in the expression for the power spectrum.

Safinaz said:
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
I have the same concern as @anuttarasammyak. There's no point trying to find some identity you think you need if what you're starting with is wrong.

I moved this thread to the advanced physics forum. Perhaps someone with expertise in gravitational waves can shed some light on your question.
 
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
995
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K