How Does the Dirac Delta Function Identity Apply in Equation (27) Derivation?

Click For Summary

Homework Help Overview

The discussion revolves around the derivation of equation (27) in a paper concerning the Dirac delta function identity and its application in the context of power spectrum calculations in physics. The problem involves understanding the relationships between various functions defined in earlier equations and how they interact under specific conditions.

Discussion Character

  • Conceptual clarification, Assumption checking, Problem interpretation

Approaches and Questions Raised

  • Participants are exploring the implications of the Dirac delta function identities, particularly in relation to the equations provided. They question how the addition of functions F(k1) and F(k2) in equation (27) aligns with their multiplication in earlier equations. There is also a focus on the compatibility of conditions under which the left-hand side and right-hand side of the equation are non-zero.

Discussion Status

The discussion is ongoing, with participants seeking clarification on the definitions and roles of variables involved, particularly the variable k. Some guidance has been offered regarding the transformation from x space to k space, but there remains uncertainty about the identities leading to equation (27) and the implications of the Dirac delta functions.

Contextual Notes

Participants note that the discussion is situated within advanced physics, specifically relating to gravitational waves, and that there may be constraints or assumptions in the original paper that are not fully addressed in the current dialogue.

Safinaz
Messages
255
Reaction score
8
Homework Statement
May you please let me know if there an identity of a Dirac Delta function in momentum space that tells if:
Relevant Equations
##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
I need help to understand how equation (27) in this paper has been derived.

The definition of P(k) (I discarded in the question ##\eta## or the integration with respect for it) is given by (26) and the definition of h(k) and G(k) are given by Eq. (25) and Eq. (24) respectively.

In my question I defined:
##
F(k_1) = \frac{1}{\sqrt{H^2-k_1^2}} sinh (\sqrt{H^2-k_1^2} (\eta-\tilde{\eta}_1)) \frac{1}{H\tilde{\eta}_1} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_1} Y'_i Y'_j ]
##

and
##
F(k_2) = \frac{1}{\sqrt{H^2-k_2^2}} sinh (\sqrt{H^2-k_2^2} (\eta-\tilde{\eta}_2)) \frac{1}{H\tilde{\eta}_2} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_2} Y'_i Y'_j ]
##

So in (27) ##F(k_1)## and ##F(k_2)## are added while according to (26) they are multiplied , so what is the identity of ##\delta^3(k)## and ##\delta(k_1-k_2)## which lead to Eq.(27) ?

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
Safinaz said:
Relevant Equations: ##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
 
Safinaz said:
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
That explains what ##\mathbf{k}_1## and ##\mathbf{k}_2## are. It doesn't explain what ##\mathbf{k}## is in the expression for the power spectrum.

Safinaz said:
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
I have the same concern as @anuttarasammyak. There's no point trying to find some identity you think you need if what you're starting with is wrong.

I moved this thread to the advanced physics forum. Perhaps someone with expertise in gravitational waves can shed some light on your question.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K