How Does the Dirac Delta Function Identity Apply in Equation (27) Derivation?

Click For Summary
SUMMARY

The discussion centers on the derivation of equation (27) in a paper involving the Dirac Delta function identity. The identities of the functions F(k1) and F(k2), defined in terms of sinh and the parameters H, η, and m, are crucial for understanding the relationship between the left-hand side (LHS) and right-hand side (RHS) of the equation. The LHS is non-zero only when k1 = k2 = 0, while the RHS is non-zero when k1 = k2, indicating a compatibility issue that needs resolution. The transformation from x space to k space via Fourier transformation is also highlighted as a key step in the derivation process.

PREREQUISITES
  • Understanding of the Dirac Delta function and its properties
  • Familiarity with Fourier transforms and their applications in physics
  • Knowledge of power spectrum concepts in cosmology
  • Basic grasp of hyperbolic functions, specifically sinh
NEXT STEPS
  • Study the properties of the Dirac Delta function in the context of quantum field theory
  • Learn about the derivation of power spectra in cosmological models
  • Investigate Fourier transformation techniques and their implications in physics
  • Explore advanced topics in gravitational waves and their mathematical formulations
USEFUL FOR

Researchers, physicists, and students specializing in theoretical physics, particularly those focusing on gravitational waves and cosmological models involving the Dirac Delta function.

Safinaz
Messages
255
Reaction score
8
Homework Statement
May you please let me know if there an identity of a Dirac Delta function in momentum space that tells if:
Relevant Equations
##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
I need help to understand how equation (27) in this paper has been derived.

The definition of P(k) (I discarded in the question ##\eta## or the integration with respect for it) is given by (26) and the definition of h(k) and G(k) are given by Eq. (25) and Eq. (24) respectively.

In my question I defined:
##
F(k_1) = \frac{1}{\sqrt{H^2-k_1^2}} sinh (\sqrt{H^2-k_1^2} (\eta-\tilde{\eta}_1)) \frac{1}{H\tilde{\eta}_1} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_1} Y'_i Y'_j ]
##

and
##
F(k_2) = \frac{1}{\sqrt{H^2-k_2^2}} sinh (\sqrt{H^2-k_2^2} (\eta-\tilde{\eta}_2)) \frac{1}{H\tilde{\eta}_2} [m^2 Y_i Y_j-\frac{1}{H\tilde{\eta}_2} Y'_i Y'_j ]
##

So in (27) ##F(k_1)## and ##F(k_2)## are added while according to (26) they are multiplied , so what is the identity of ##\delta^3(k)## and ##\delta(k_1-k_2)## which lead to Eq.(27) ?

Any help is appreciated!
 
Last edited:
Physics news on Phys.org
Safinaz said:
Relevant Equations: ##
F(k_1) \delta^3 (k_1) \times F(k_2) \delta^3 (k_2) = \frac{2 \pi^3}{k^2} \delta(k_1-k_2) P(k)
##
Then :
##
P(k) = - 4 ( F(k_1) + F(k_2) )
##
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
 
anuttarasammyak said:
k appears only in RHS. What is the definition of k?

LHS is not zero only when k_1=k_2=0. RHS is not zero only when k_1=k_2. They do not seem compatible.
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
 
Safinaz said:
In a previous step in the paper, a transformation has been done from ##x## space to ##k## space by fourier-transforming
That explains what ##\mathbf{k}_1## and ##\mathbf{k}_2## are. It doesn't explain what ##\mathbf{k}## is in the expression for the power spectrum.

Safinaz said:
I try to figure out the identity that leads to equation (27) in the menstioned paper. and writting ##F(k_1)## or ##F(k_2)## just to simplify. So that I'm asking about the correct identity of Dirac Delta
I have the same concern as @anuttarasammyak. There's no point trying to find some identity you think you need if what you're starting with is wrong.

I moved this thread to the advanced physics forum. Perhaps someone with expertise in gravitational waves can shed some light on your question.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
5
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K