Undergrad How Does the Successive Minima of a Lattice Compare to Basis Vectors?

Click For Summary
The discussion centers on the relationship between the successive minima of a lattice, denoted as λi(Λ), and the lengths of the basis vectors bi. It is argued that λi(Λ) is at most equal to the maximum length of the basis vectors, specifically λi(Λ) ≤ max(||bi||). The participants also explore the possibility of proving that λi(Λ) is less than or equal to the length of the i-th basis vector, λi(Λ) ≤ ||bi||, particularly in cases where the basis vectors are ordered by length. The conversation emphasizes the definitions and implications of these relationships, ultimately agreeing on the validity of the initial claims. The thread concludes with a consensus on the mathematical reasoning behind these inequalities.
Peter_Newman
Messages
155
Reaction score
11
Hello,

I've been thinking a bit about the definition of the ##i##-th successive minima of a lattice (denoted with ##\lambda_i(\Lambda)##), and I would argue that the ##i##-th successive minimum is at most as large as the largest lattice basis vector ##b_i##.

More formally:

##\lambda_i(\Lambda) \leq \max_{i} ||b_i||##

So purely intuitively I would say that makes sense, but is there any way to show this?

Now you could also come up with the idea to claim that the following holds:

##\lambda_i(\Lambda) \leq ||b_i||##

Is there a way to prove this here, I can't find one at the moment unfortunately, while I'm also not sure if this is even possible...

I would be very grateful for any helpful comments!
 
Physics news on Phys.org
What is your definition of the successive minima? The one I know makes this really obvious.
 
  • Skeptical
Likes Peter_Newman
There are different definitions. I would suggest this one:

## \lambda_i(\Lambda) = inf\left\{r > 0 | \text{ Linear independent lattice vectors } v_1,...,v_i \text{ with } ||v_j|| \leq r \text{ for } j = 1,2,...,i\right\} \quad \text{ for } i = 1,...,n##
Office_Shredder said:
The one I know makes this really obvious.
Which one do you have?
 
Last edited:
That's the one I know.So if you pick ##i## basis vectors, they are independent. That's an example of a set of vectors used in the definition of ##\lambda_i## What does that say about the length of the longest vector compared to ##\lambda_i##?
 
Office_Shredder said:
That's the one I know.So if you pick ##i## basis vectors, they are independent. That's an example of a set of vectors used in the definition of ##\lambda_i## What does that say about the length of the longest vector compared to ##\lambda_i##?
By definition I would say that ##\lambda_i## has to be less or equal to that longest vector. Is this ok? Basis vector alone makes no shortest vector, but it could...
 
Yeah, that's the whole proof
 
  • Like
Likes Peter_Newman
Thanks, so this proofs ##\lambda_i(\Lambda) \leq \max_{i} ||b_i||##. This also makes sense from the definition!

Then I have another question about this ##\lambda_i(\Lambda) \leq ||b_i||##, how would one prove or argue this. I'm bothered by the ##i## in the vector (##b_i##) here, because that implies some sort of "sorting" of the vectors...
 
You have bad notation with that max, having the index be the same as the left hand side. I would say given a basis ##b_1,...,b_n## of the lattice, for ##1\leq i \leq n##, ##\lambda_i \leq \max_{j} ||b_j||##. In fact, we even know ##\lambda_i \leq \max_{j\leq i} ||b_j||##. (Or same for the max over any ##i## of the basis vectors) In the case where the basis is ordered such that ##||b_1|| \leq ||b_2|| \leq ... \leq ||b_n||##, this implies ##\lambda_i \leq ||b_i||##
 
  • Informative
Likes Peter_Newman
Office_Shredder said:
You have bad notation with that max, having the index be the same as the left hand side.
Yes, that' s true, I agree!

Office_Shredder said:
I would say given a basis ##b_1,...,b_n## of the lattice, for ##1\leq i \leq n##, ##\lambda_i \leq \max_{j} ||b_j||##. In fact, we even know ##\lambda_i \leq \max_{j\leq i} ||b_j||##. (Or same for the max over any ##i## of the basis vectors) In the case where the basis is ordered such that ##||b_1|| \leq ||b_2|| \leq ... \leq ||b_n||##, this implies ##\lambda_i \leq ||b_i||##
That's a good way of putting it! Thank you!
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
54
Views
11K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K