MHB How Does the Sum of $\frac{1}{\sqrt{1 + n^2} + n}$ Diverge?

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion centers on the divergence of the series $\sum_{n=1}^{\infty}(\sqrt{1+n^2}-n)$. It is established that $\sqrt{1+n^2}-n$ can be rewritten as $\frac{1}{\sqrt{1+n^2}+n}$, which asymptotically behaves like $\frac{1}{n}$. The limit comparison test is suggested to demonstrate that both series diverge, as the limit of their ratio converges. Additionally, there is a mention of the Riemann Zeta function's convergence criteria, emphasizing that since $\text{Re}(\sigma) = 1$, it indicates divergence. The conclusion is that while the series diverges, careful analysis is necessary to illustrate this divergence properly.
Dustinsfl
Messages
2,217
Reaction score
5
$\sum\limits_{n = 1}^{\infty}\left(\sqrt{1 + n^2} - n\right)$

$$
\sqrt{1 + n^2} - n = \frac{1}{\sqrt{1 + n^2} + n}
$$
Now what?
 
Physics news on Phys.org
dwsmith said:
$\sum\limits_{n = 1}^{\infty}\left(\sqrt{1 + n^2} - n\right)$

$$
\sqrt{1 + n^2} - n = \frac{1}{\sqrt{1 + n^2} + n}
$$
Now what?

\[\frac{1}{\sqrt{1+n^2}+n}\sim \frac{1}{n}\]

So it makes sense to compare this to $\dfrac{1}{n}$. I'd suggest using the limit comparison test to do this and show that

\[\lim_{n\to\infty}\dfrac{\dfrac{1}{n}}{\dfrac{1}{ \sqrt{1+n^2} +n}}\rightarrow L\]

If the limit converges (i.e. $L<\infty$), both terms have the same behavior (in this case, the limit should converge, implying that both series diverge).

I hope this helps!
 
Chris L T521 said:
\[\frac{1}{\sqrt{1+n^2}+n}\sim \frac{1}{n}\]

So it makes sense to compare this to $\dfrac{1}{n}$. I'd suggest using the limit comparison test to do this and show that

\[\lim_{n\to\infty}\dfrac{\dfrac{1}{n}}{\dfrac{1}{ \sqrt{1+n^2} +n}}\rightarrow L\]

If the limit converges (i.e. $L<\infty$), both terms have the same behavior (in this case, the limit should converge, implying that both series diverge).

I hope this helps!

Wouldn't it be easier than to say that $\frac{1}{n} > \frac{1}{\sqrt{1+n^2}+n}$ and the Riemann Zeta function only converges for the $\text{Re}(\sigma) >1$. Since $\text{Re} (\sigma) =1$, it diverges.
 
dwsmith said:
Wouldn't it be easier than to say that $\frac{1}{n} > \frac{1}{\sqrt{1+n^2}+n}$ and the Riemann Zeta function only converges for the $\text{Re}(\sigma) >1$. Since $\text{Re} (\sigma) =1$, it diverges.

I'm not that confident with working with Zeta functions. However, I must say that in order to show divergence, you need to find a general term that is smaller than the term of the series you're looking at; that is, if you're comparing two series $\sum a_n$ and $\sum b_n$ and $a_n\leq b_n$, then $\sum b_n$ diverges if $\sum a_n$ does. So, if you want to use zeta functions, you want to find some multiple $k$ of the summand term in $\zeta(1)$ such that $\dfrac{k}{n}<\dfrac{1}{\sqrt{1+n^2}+n}$.

It's going to diverge no matter what, but you need to be careful in showing how it does so.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K