- 49,346
- 25,384
A. Neumaier said:For a nonisolated quantum spin, the reduced density matrix is again represented on the Bloch sphere but has a nonlinear, dissipative dynamics obtained by coarse-graining.
This would appear to be the fundamental difference between the treatment you are giving and the "standard" QM treatment, which uses the linear dynamics of the Schrodinger equation combined with the obvious assumption about how the interaction Hamiltonian between the SG apparatus, with its inhomogeneous magnetic field, and the spin-1/2 passing through it acts on spin states that are parallel to the field inhomogeneity (e.g., +x and -x spins for an apparatus oriented in the x direction). In the standard treatment, the action of the Hamiltonian on a +z spin is given by simple superposition (which is allowed due to the linearity of the Schrodinger equation) of the actions on the +x and -x spins.
But the dynamics you are attributing to the system + apparatus is nonlinear, so the simple standard linear superposition picture does not work and there is no solution to the nonlinear dynamics that describes a superposition of a spot at the +x position and a spot at the -x position. Instead, there are two solutions, one describing a +x spot and one describing a -x spot, and which solution gets realized in a particular case depends on random and unmeasurable fluctuations.
Is this a fair description of what you are saying?