MHB How Does the Triangle Inequality Apply to Complex Numbers?

Click For Summary
The discussion focuses on proving the inequality 2|z||w| ≤ |z|^2 + |w|^2 for complex numbers z and w. Participants suggest using the non-negativity of (|z| - |w|)^2 to derive the result, expanding it to show that |z|^2 + |w|^2 - 2Re(zw*) is non-negative. An alternative approach involves expressing |z|^2 + |w|^2 in terms of their real and imaginary components, leading to the application of the arithmetic-geometric mean inequality. The conversation also touches on the derivation of the expression for (|z| - |w|)^2 and its relation to the real part of the product of z and the conjugate of w. The thread effectively explores different methods to establish the triangle inequality in the context of complex numbers.
Poirot1
Messages
243
Reaction score
0
let z,w be complex numbers. Prove:

2|z||w| <_ |z|^2 + |w|^2
 
Mathematics news on Phys.org
Well, you could note that $(|z| - |w|)^2 \geq 0$ and work from there.
 
0<_ (|z|-|w|)^2=|z|^2+|w|^2-2Re(zw*).

Ok so I can say Re(zw*)<_|zw*|=|zw| but that doesn't quite get me there.
 
They are both real numbers, so when you expand $(|z| - |w|)^2$ you get $|z|^2 - 2|z| |w| + |w|^2 \geq 0$, hence the result.

There is the alternative of using that

$$|z|^2 + |w|^2 = \Re^2 (z) + \Im^2 (z) + \Re^2 (w) + \Im^2(w)$$

and

$$2|z||w| = 2 \sqrt{\Re^2 (z) + \Im^2 (z) } \sqrt{\Re^2 (w) + \Im^2 (w)} = 2 \sqrt{(\Re^2 (z) + \Im^2 (z))(\Re^2 (w) + \Im^2 (w))}.$$

Now, $a = \Re^2 (z) + \Im^2 (z)$ is a positive real number, same as $b = \Re^2 (w) + \Im^2 (w)$. This is the arithmetic geometric mean written in a different way:

$$\frac{a+b}{2} \geq \sqrt{ab} \implies \frac{\Re^2 (z) + \Im^2 (z) + \Re^2 (w) + \Im^2(w)}{2} \geq \sqrt{(\Re^2 (z) + \Im^2 (z))(\Re^2 (w) + \Im^2 (w))}.$$

How did you get that $(|z| - |w|)^2 = |z|^2 + |w|^2 - 2 \Re (z \bar{w})$?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K