MHB How Does Trigonometry Affect the Roots of a Quadratic Equation?

AI Thread Summary
Trigonometry influences the roots of a quadratic equation by altering its coefficients, specifically through terms involving sine and cosine functions. A non-degenerate quadratic equation has exactly two roots in the complex number system and two or fewer in the real number system, unless all coefficients are zero, making it an identity. The discussion highlights the condition for real and distinct roots, which requires the discriminant to be greater than zero. The relationship between the coefficients and trigonometric functions leads to a derived inequality that can help determine the value of the angle theta. Understanding these interactions is crucial for solving quadratic equations influenced by trigonometric terms.
juantheron
Messages
243
Reaction score
1
http://www.screencatch.com/screenshots/13354664404923.jpg
 
Mathematics news on Phys.org
Re: quad equation with trigo

jacks said:
http://www.screencatch.com/screenshots/13354664404923.jpg

Do you mean has more than two roots as an equation in \(x\)?

Well if this is a non-degenerate quadratic it has exactly two roots in \(\mathbb{C}\), and two or fewer roots in \( \mathbb{R}\).

For it to have more than two roots all of the coefficients (including the constant term) must be zero.

CB
 
Re: quad equation with trigo

Using Caption Black Hint

If $Ax^2+Bx+C=0$ has more then Two Roots, Then It will become an Identity Which is True for all Real $x$

So $A=B=C=0$

Now here $\left(a-\sin \theta\right)\alpha^2+b\alpha+\left(c+\cos \theta\right) = 0$

Similarly $\left(a-\sin \theta\right)\beta^2+b\beta+\left(c+\cos \theta\right) = 0$

and $\left(a-\sin \theta\right)\gamma^2+b\gamma+\left(c+\cos \theta\right) = 0$

Now We Can in General as $\left(a-\sin \theta\right)y^2+by+\left(c+\cos \theta\right) = 0$

Where $y=\alpha\;,\beta\;,\gamma$ are the roots of above Given equation

If This equation has Real and Distinct Roots, then Its Discriminant $>0$

So $b^2-4.\left(a-\sin \theta\right).\left(c+\cos \theta\right)>0$

and $a+b+c=1$ is Given

after Simplification $(b^2-4ac)+4(c\sin \theta+a\cos \theta-\sin \theta.\cos \theta)>0$

Now How can find value of $\theta$ from here

Help Required.

Thanks
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top