Verlinde's blog of 15 January ...
==quote==
Entropic forces and the 2nd law of thermodynamics
15/01/10 02:21
Let me address some other confusions in the blog discussion. The fact that a force in entropic does not mean it should be irreversible. This is a complete misunderstanding of what it means to have an entropic force. This is why I added section 2 on the entropic force. For a polymer the force obeys Hooke's law, which is conservative. No doubt about that.
Just last week we had a seminar in Amsterdam on DNA. Precisely the situation described in section two was performed in lab experiments, using optical tweezers. The speaker, Gijs Wuite from the Free University in Amsterdam, showed movies of DNA being stretched and again released. These biophysicist know very well that these forces are purely entropic, and also reversible. The movies clearly showed reversibility, to a very high degree. In fact, I asked the speaker specifically about this, and he confirmed it. They test this in the lab, so it is an experimental fact that entropic forces can be conservative.
So please read section 2, study it and read it again, and think about it for a little longer. When the heat bath is infinite, the force is perfectly conservative. For the case of gravity the speed of light determines the size of the heat bath, since its energy content is given by E=Mc^2. So in the non relativistic limit the heat bath is infinite. Indeed, Newton's laws are perfectly conservative. When one includes relativistic effects, the heat bath is no longer infinite. Here one could expect some irreversibility. In fact, I suspect that the production of gravity waves is causing this. Indeed, a binary system will eventually coalesce. This is irreversible, indeed. This all fits very well. Extremely well, actually. Of course, when I first got these ideas, I worried about too much irreversiblity too. I knew about the polymer example, but had to study it again to convince myself that entropic forces can indeed be reversible.
Another useful point to know is that when a system is slightly out of equilibrium, it will indeed generate some entropy. But a theorem by Prigogine states that the dynamics of the system will adapt itself so that entropy production is minimized. Yes, really minimized. This may appear counterintuitive, but I like to look at it as that it seeks the path of least resistance. So this means that there will in general not be a lot of entropy generated. At least, the system will do whatever it can to minimize it.
By the way, it is true that the total energy of a system of two masses is given by the total mass. But if one then takes the entropy gradient to be proportional to the reduced mass, one again recovers the right force. I thought of putting that in the paper, but I think it is kind of trivial. This confusion was not to difficult to solve.
Another point that may not be appreciated is that the system is actually taken out of equilibrium. If everything would be in equilibrium, the universe would be a big black hole, or be described by pure de Sitter space. Only horizons, no visible matter. If a system is out of equilibrium, there is not a very precise definition of temperature. In fact, different parts of the system may have different temperatures. There is no problem also with neutron stars. In fact, physical neutron stars do not have exact zero temperature. But the temperature I use in the paper is one that is associated with the microscopic degrees of freedom, which because there is no equilibrium, is not necessarily equal to the macroscopic temperature.
In fact, the microscopic degrees of freedom on the holographic screens should not be seen as being associated with local degrees of freedom in actual space. They are very non local states. This is what holography tells us. In fact, they can also not be only related to the part of space contained in the screen, because this would mean we can count micro states independently for every part of space, and in this way we would violate the holographic principle. There is non locality in the microstates.
Another point: gravitons do not exist when gravity is emergent. Gravitons are like phonons. In fact, to make that analogy clear consider two pistons that close of a gas container at opposite ends. Not that the force on the pistons due to the pressure is also an example of an entropic force. We keep the pistons in place by an external force. When we gradually move one of the pistons inwards by increasing the force, the pressure will become larger. Therefore the other piston will also experience a larger force. We can also do this in an abrupt way. We then cause a sound wave to go from one piston to the other. The quantization of this sound wave leads to phonons. We know that phonons are quite useful concepts, which even themselves are often used to understand other emergent phenomena.
Similarly, gravitons can be useful, and in that sense exist as effective "quasi" particles. But they do not exist as fundamental particles.
==endquote==
(from blog http://staff.science.uva.nl/~erikv/page18/page18.html )