SUMMARY
The discussion focuses on calculating the vertical distance ink droplets fall in an ink-jet printer as they travel horizontally at a speed of 12 m/s over a distance of 1.0 mm. The time taken for the droplets to reach the paper is calculated using the formula t = x/v0, resulting in approximately 8.3 x 10^-5 seconds. The vertical displacement is then determined using the kinematic equation Y = Y0 + Vy0*t - 1/2 g*t^2, leading to a calculated fall of -3.40 x 10^-8 meters, which is interpreted as a downward distance. The negative value indicates direction, and the absolute value is taken for the final answer.
PREREQUISITES
- Understanding of kinematic equations in physics
- Basic knowledge of projectile motion
- Familiarity with the concept of vertical and horizontal components of motion
- Ability to perform unit conversions (e.g., mm to meters)
NEXT STEPS
- Study the principles of projectile motion in physics
- Learn about kinematic equations and their applications
- Explore the concept of vector displacement and frame of reference
- Practice solving problems involving free fall and horizontal motion
USEFUL FOR
Students studying physics, particularly those focusing on mechanics and kinematics, as well as educators looking for examples of projectile motion applications.