The two expressions aren't the same, I think. 1.5.3 assumes that ##\vec{\beta}_v=(\beta_v,0,0)^T##, while 1.5.4 makes no such assumption. You could just plug this assumption into 1.5.4 as a plausibility check. If you actually need to derive 1.5.4 then I'd start with four velocities and work from there, not from 1.5.3.
A slightly better plausibility argument is to argue that ##(\beta_v+\bar{\beta}_w^1,\bar\beta_w^2/\gamma_v,\bar\beta_w^3/\gamma_v)^T## could be said to be ##\vec\beta_v## plus the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v## plus ##1/\gamma_v## times the component of ##\vec{\bar\beta}_w## perpendicular to ##\vec\beta_v##.
The vector times the dot product in the last term in brackets in 1.5.4 pulls out the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v##, which is then added/subtracted appropriately to get what I wrote in words above.
The idea is to calculate the three-velocity ##\vec{w}## first for the simplifying case that ##\vec{v}=v \vec{e}_1##. Then one makes use of the fact that ##\vec{w}=\vec{W}/W^0## is a "three-vector", i.e., it transforms under rotations as a three-vector, and thus one can get the expression for an arbitrary ##\vec{v}## by writing (1.5.2) in a form that is kovariant under rotations; you can indeed check that when setting ##\vec{v}=v \vec{e}_1## in (1.5.3) you get back (1.5.2). Since (1.5.3) is written in a kovariant form under rotations, it must be correct for the general case, if it's correct for the special case.
1. The Big Idea:
According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box.
2. How It Works: The Two-Stage Process
Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)...
Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/
by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this:
$$
\partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}.
$$
The integrability conditions for the existence of a global solution ##F_{lj}## is:
$$
R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0
$$
Then from the equation:
$$\nabla_b e_a= \Gamma^c_{ab} e_c$$
Using cartesian basis ## e_I...