A How is eq. 1.5.3 written using three-vectors and how does it lead to eq. 1.5.4?

SwetS
Messages
1
Reaction score
0

Attachments

  • Screenshot (94).png
    Screenshot (94).png
    35.6 KB · Views: 93
Physics news on Phys.org
The two expressions aren't the same, I think. 1.5.3 assumes that ##\vec{\beta}_v=(\beta_v,0,0)^T##, while 1.5.4 makes no such assumption. You could just plug this assumption into 1.5.4 as a plausibility check. If you actually need to derive 1.5.4 then I'd start with four velocities and work from there, not from 1.5.3.

@vanhees71 might add more detail.
 
A slightly better plausibility argument is to argue that ##(\beta_v+\bar{\beta}_w^1,\bar\beta_w^2/\gamma_v,\bar\beta_w^3/\gamma_v)^T## could be said to be ##\vec\beta_v## plus the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v## plus ##1/\gamma_v## times the component of ##\vec{\bar\beta}_w## perpendicular to ##\vec\beta_v##.

The vector times the dot product in the last term in brackets in 1.5.4 pulls out the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v##, which is then added/subtracted appropriately to get what I wrote in words above.
 
The idea is to calculate the three-velocity ##\vec{w}## first for the simplifying case that ##\vec{v}=v \vec{e}_1##. Then one makes use of the fact that ##\vec{w}=\vec{W}/W^0## is a "three-vector", i.e., it transforms under rotations as a three-vector, and thus one can get the expression for an arbitrary ##\vec{v}## by writing (1.5.2) in a form that is kovariant under rotations; you can indeed check that when setting ##\vec{v}=v \vec{e}_1## in (1.5.3) you get back (1.5.2). Since (1.5.3) is written in a kovariant form under rotations, it must be correct for the general case, if it's correct for the special case.
 
  • Like
Likes SwetS and Ibix
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top