PAllen said:
That aberration, again, is between the sun's observation and an observation in a momentary rest frame of the star. Nobody can see this or cares about this. Given, over some viewing period, a description of the motion of moving, accelerating star (imagine a very large binary system) in the solar frame (computed by adjusting the raw observation for day by day changes in Earth's motion), you can then extrapolate the stars position in the solar inertial frame, and than compute where to observe it at any future date.
The rigorous thing to do is to compose the instantaneous velocity of the star wrt. the Sun with the instantaneous velocity of the Sun wrt. the Earth. Use the resultant speed to calculate the aberration. This is what I am showing in post 18.
What you are doing is composing the instantaneous position of the star with respect to the Sun with the instantaneous velocity of the Earth wrt. the Sun. This isn't rigorous, no wonder that applying this method enables you to claim that "see, the speed of the source (the star) does not affect the aberration".
A priori, nobody knows the velocity of a star relative to Earth or to the sun.
All you need to know is the angular velocity of one star about the other star, as Brown does in his
derivation:
" The coordinates of the smaller star revolving at a radius R and angular speed w around the larger star in a plane perpendicular to the Earth are x2(t) = -vt + Rcos(q), y2(t) = Rsin(q), z2(t) = L, and t2(t) = t, where q = wt + f is the angular position of the smaller star in its orbit. Again, since light travels along null paths, a pulse of light arriving on Earth at time t = 0 was emitted at time t = T satisfying the relation
Dividing through by L2 and re-arranging terms, we have
Consequently, for L sufficiently great compared to R, the second two terms on the right side are negligible, so we have again T = , and hence the tangents of the angles of incidence in the x and y directions are
The leading terms in these tangents represent just the inherent "static" angular separation between the two stars viewed from the Earth,
and these angles are negligibly small for sufficiently large L. Thus the tangent of the aberration angle is (again) essentially just , and so, as before, we have sin(a) = v, which of course is the same as for the central star. Incidentally, recall that Bradley's original formula for aberration was tan(a) = v, whereas the corresponding relativistic equation is sin(a) = v.
The actual aberration angles for stars seen from Earth are small enough that the sine and tangent are virtually indistinguishable."
A collection of approximations, indeed, but he does use the angular velocity of one star as it orbits the "stationary" one. He does use a combination of the angular velocity of the "orbiting star" with the position of the "central star" wrt. the Sun.