I How is spin exchange interaction generalised to many electrons?

gaiussheh
Messages
30
Reaction score
6
TL;DR Summary
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##-E_{i,j}\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. How is this generalised from the two-electron case?
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. I referred to many textbooks, and most of them just generalised this from the two-electron case ##\hat{S}_{1}\cdot \hat{S}_2##. While this seems natural, it is completely unlogical as this is not the magnetic dipole itself but the exchange interaction that arose from the symmetry of the spatial wave function.

Take a step back. Two electrons can form either a singlet or a triplet. For a singlet, ##\hat{S}_{1}\cdot \hat{S}_2=-\frac{3}{4}## and the spin part is symmetric, hence the spatial part is antisymmetric. For a triplet, ##\hat{S}_{1}\cdot \hat{S}_2=\frac{1}{4}## and the spin part is antisymmetric, hence the spatial part is asymmetric. This arise different energies ##E_{\rm S}=\langle\psi_{\rm S}|\hat{\mathcal{H}}|\psi_{\rm S}\rangle## and ##E_{\rm T}=\langle\psi_{\rm T}|\hat{\mathcal{H}}|\psi_{\rm T}\rangle##. However, both can be written as

##E_{\rm T} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\frac{1}{4}(E_{\rm S}-E_{\rm T})##
##E_{\rm S} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}+\frac{3}{4}(E_{\rm S}-E_{\rm T})##
Hence in any case ##E=\frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\hat{S}_{1}\cdot \hat{S}_2(E_{\rm S}-E_{\rm T})##
The energy due to spin is ##-E_{1,2}\hat{S}_{1}\cdot \hat{S}_{2}##, where ##E_{1,2} = E_{\rm S}-E_{\rm T}##.

I find it not that easy to generalise to a many-body system. In general, you will need a Slater determinant to describe the wave function and consider the effect of exchanging any two electrons. I don't even know if it is possible to write this into the form of ##\psi_{\rm spatial}[{\vec r}_1, {\vec r}_2, \cdots, {\vec r}_n]\cdot[{\rm spin~of~i~and~j}] \cdot[{\rm spin~of~other~electrons}]## etc. (Actually, I think you can't let the slater determinant be an eigenstate of ##\hat{S}_{i}\cdot \hat{S}_j## for all pair of ##i,j##).

How is this generalised at all?
 
Physics news on Phys.org
Do you know second quantization? It was invented for this purpose.
 
Last edited:
pines-demon said:
Do you know second quantization? It was invented for this purpose.
I know how this is done in a serious solid-state course, but I'm teaching second-year students, so better not to introduce that. Is there a way to fix it using simple QM?
 
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top