I How is spin exchange interaction generalised to many electrons?

Click For Summary
The discussion centers on the generalization of spin exchange interactions in many-electron systems, starting from the two-electron case. The many-body spin Hamiltonian is expressed as a sum of spin interactions, but the transition from two to many electrons raises complexities due to the need for Slater determinants to describe wave functions. The energy differences between singlet and triplet states are highlighted, emphasizing the challenge in formulating a general expression for many-body systems. The conversation touches on the limitations of using simple quantum mechanics for teaching these concepts to second-year students, suggesting that second quantization may be necessary for a proper understanding. Overall, the thread seeks clarity on how to effectively generalize spin exchange interactions in a pedagogical context.
gaiussheh
Messages
30
Reaction score
6
TL;DR
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##-E_{i,j}\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. How is this generalised from the two-electron case?
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. I referred to many textbooks, and most of them just generalised this from the two-electron case ##\hat{S}_{1}\cdot \hat{S}_2##. While this seems natural, it is completely unlogical as this is not the magnetic dipole itself but the exchange interaction that arose from the symmetry of the spatial wave function.

Take a step back. Two electrons can form either a singlet or a triplet. For a singlet, ##\hat{S}_{1}\cdot \hat{S}_2=-\frac{3}{4}## and the spin part is symmetric, hence the spatial part is antisymmetric. For a triplet, ##\hat{S}_{1}\cdot \hat{S}_2=\frac{1}{4}## and the spin part is antisymmetric, hence the spatial part is asymmetric. This arise different energies ##E_{\rm S}=\langle\psi_{\rm S}|\hat{\mathcal{H}}|\psi_{\rm S}\rangle## and ##E_{\rm T}=\langle\psi_{\rm T}|\hat{\mathcal{H}}|\psi_{\rm T}\rangle##. However, both can be written as

##E_{\rm T} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\frac{1}{4}(E_{\rm S}-E_{\rm T})##
##E_{\rm S} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}+\frac{3}{4}(E_{\rm S}-E_{\rm T})##
Hence in any case ##E=\frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\hat{S}_{1}\cdot \hat{S}_2(E_{\rm S}-E_{\rm T})##
The energy due to spin is ##-E_{1,2}\hat{S}_{1}\cdot \hat{S}_{2}##, where ##E_{1,2} = E_{\rm S}-E_{\rm T}##.

I find it not that easy to generalise to a many-body system. In general, you will need a Slater determinant to describe the wave function and consider the effect of exchanging any two electrons. I don't even know if it is possible to write this into the form of ##\psi_{\rm spatial}[{\vec r}_1, {\vec r}_2, \cdots, {\vec r}_n]\cdot[{\rm spin~of~i~and~j}] \cdot[{\rm spin~of~other~electrons}]## etc. (Actually, I think you can't let the slater determinant be an eigenstate of ##\hat{S}_{i}\cdot \hat{S}_j## for all pair of ##i,j##).

How is this generalised at all?
 
Physics news on Phys.org
Do you know second quantization? It was invented for this purpose.
 
Last edited:
pines-demon said:
Do you know second quantization? It was invented for this purpose.
I know how this is done in a serious solid-state course, but I'm teaching second-year students, so better not to introduce that. Is there a way to fix it using simple QM?
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...