How is spin exchange interaction generalised to many electrons?

Click For Summary
SUMMARY

The discussion focuses on the generalization of spin exchange interactions in many-electron systems, specifically through the many-body spin Hamiltonian represented as ##\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. The participants highlight the inadequacy of simply extending the two-electron case, ##\hat{S}_{1}\cdot \hat{S}_2##, to many electrons without considering the underlying symmetry of the spatial wave function. Key concepts include the distinction between singlet and triplet states, their respective energies, and the necessity of using a Slater determinant to accurately describe the wave function in many-body systems. The discussion also touches on the challenges of teaching these concepts to second-year students without delving into advanced solid-state physics.

PREREQUISITES
  • Understanding of many-body spin Hamiltonians
  • Familiarity with singlet and triplet states in quantum mechanics
  • Knowledge of Slater determinants in quantum mechanics
  • Basic principles of second quantization
NEXT STEPS
  • Research the derivation of the many-body spin Hamiltonian in solid-state physics
  • Study the implications of singlet and triplet states on energy levels
  • Learn about Slater determinants and their role in many-electron systems
  • Explore the principles and applications of second quantization in quantum mechanics
USEFUL FOR

Students and educators in solid-state physics, quantum mechanics enthusiasts, and anyone interested in the complexities of many-body systems and spin interactions.

gaiussheh
Messages
30
Reaction score
6
TL;DR
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##-E_{i,j}\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. How is this generalised from the two-electron case?
In solid state physics or statistical physics, the many-body spin Hamiltonian is written as ##\sum_{i,j} \hat{S}_{i}\cdot \hat{S}_j##. I referred to many textbooks, and most of them just generalised this from the two-electron case ##\hat{S}_{1}\cdot \hat{S}_2##. While this seems natural, it is completely unlogical as this is not the magnetic dipole itself but the exchange interaction that arose from the symmetry of the spatial wave function.

Take a step back. Two electrons can form either a singlet or a triplet. For a singlet, ##\hat{S}_{1}\cdot \hat{S}_2=-\frac{3}{4}## and the spin part is symmetric, hence the spatial part is antisymmetric. For a triplet, ##\hat{S}_{1}\cdot \hat{S}_2=\frac{1}{4}## and the spin part is antisymmetric, hence the spatial part is asymmetric. This arise different energies ##E_{\rm S}=\langle\psi_{\rm S}|\hat{\mathcal{H}}|\psi_{\rm S}\rangle## and ##E_{\rm T}=\langle\psi_{\rm T}|\hat{\mathcal{H}}|\psi_{\rm T}\rangle##. However, both can be written as

##E_{\rm T} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\frac{1}{4}(E_{\rm S}-E_{\rm T})##
##E_{\rm S} = \frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}+\frac{3}{4}(E_{\rm S}-E_{\rm T})##
Hence in any case ##E=\frac{1}{4}E_{\rm S}+\frac{3}{4}E_{T}-\hat{S}_{1}\cdot \hat{S}_2(E_{\rm S}-E_{\rm T})##
The energy due to spin is ##-E_{1,2}\hat{S}_{1}\cdot \hat{S}_{2}##, where ##E_{1,2} = E_{\rm S}-E_{\rm T}##.

I find it not that easy to generalise to a many-body system. In general, you will need a Slater determinant to describe the wave function and consider the effect of exchanging any two electrons. I don't even know if it is possible to write this into the form of ##\psi_{\rm spatial}[{\vec r}_1, {\vec r}_2, \cdots, {\vec r}_n]\cdot[{\rm spin~of~i~and~j}] \cdot[{\rm spin~of~other~electrons}]## etc. (Actually, I think you can't let the slater determinant be an eigenstate of ##\hat{S}_{i}\cdot \hat{S}_j## for all pair of ##i,j##).

How is this generalised at all?
 
Physics news on Phys.org
Do you know second quantization? It was invented for this purpose.
 
Last edited:
pines-demon said:
Do you know second quantization? It was invented for this purpose.
I know how this is done in a serious solid-state course, but I'm teaching second-year students, so better not to introduce that. Is there a way to fix it using simple QM?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 12 ·
Replies
12
Views
879