How is the Gradient of u(r,θ) Calculated?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Gradient
Click For Summary
SUMMARY

The gradient of the scalar field \(u(r,\theta) = r\cos(\theta)\left[1 - \left(\frac{1}{r}\right)^2\right]\) is calculated using the formula for the gradient in spherical coordinates. The resulting gradient in Cartesian coordinates is expressed as \(1 + \frac{2 x^2}{(x^2 + y^2)^2} - \frac{1}{x^2 + y^2}, \frac{2 x y}{(x^2 + y^2)^2}\). To derive this, one must compute the partial derivatives of \(u\) with respect to \(r\) and \(\theta\), and then convert the results into Cartesian coordinates. The discussion emphasizes switching to Cartesian variables for simplification.

PREREQUISITES
  • Understanding of spherical coordinates and their gradients
  • Familiarity with partial derivatives
  • Knowledge of Cartesian coordinate transformations
  • Basic calculus concepts related to scalar fields
NEXT STEPS
  • Study the derivation of gradients in spherical coordinates
  • Learn about converting functions from spherical to Cartesian coordinates
  • Explore the application of partial derivatives in vector calculus
  • Investigate examples of scalar fields and their gradients in physics
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are working with scalar fields and vector calculus, particularly those interested in understanding gradients in different coordinate systems.

Dustinsfl
Messages
2,217
Reaction score
5
I have
$$
u(r,\theta) = r\cos(\theta)\left[1 - \left(\frac{1}{r}\right)^2\right]
$$
and the gradient is
$$
1 + \frac{2 x^2}{(x^2 + y^2)^2} - \frac{1}{x^2 + y^2}, \frac{2 x y}{(x^2 + y^2)^2}
$$
How was this obtained?
 
Physics news on Phys.org
dwsmith said:
I have
$$
u(r,\theta) = r\cos(\theta)\left[1 - \left(\frac{1}{r}\right)^2\right]
$$
and the gradient is
$$
1 + \frac{2 x^2}{(x^2 + y^2)^2} - \frac{1}{x^2 + y^2}, \frac{2 x y}{(x^2 + y^2)^2}
$$
How was this obtained?

Hi dwsmith, :)

The gradient of a scalar field \(f\) in spherical coordinates is given by,

\[\nabla f(r, \theta, \phi) = \frac{\partial f}{\partial r}\mathbf{e}_r+\frac{1}{r}\frac{\partial f}{\partial \theta}\mathbf{e}_\theta+\frac{1}{r \sin\theta}\frac{\partial f}{\partial \phi}\mathbf{e}_\phi=\left(\frac{\partial f}{\partial r},\,\frac{1}{r}\frac{\partial f}{\partial \theta},\,\frac{1}{r \sin\theta}\frac{\partial f}{\partial \phi}\right)\]

Therefore,

\[\nabla u(r, \theta)=\left(\frac{\partial u}{\partial r},\,\frac{1}{r}\frac{\partial u}{\partial \theta},\,0\right)\]

Calculate the partial derivatives and convert them into Cartesian coordinates. Hope you can continue.

Kind Regards,
Sudharaka.
 
Probably the easiest way is to switch u in terms of x and y, $\it{ i.e.}$

$u = x \left( 1 - \dfrac{1}{x^2+y^2}\right)$,

then calculate the gradient the usual way.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K