How Is the Integral of sqrt(y^2-16)/y Solved Using Trigonometric Substitution?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The integral of \(\frac{\sqrt{y^2-16}}{y}\) is solved using trigonometric substitution, specifically with the substitution \(y=4\sec(\theta)\). This leads to the integral transforming into \(4\int\tan^2(\theta) \, d\theta\), which simplifies to \(-4\theta + \tan(\theta) + C\). The final result is expressed as \(I_{31} = 4\arcsin\left(\frac{4}{|y|}\right) + \sqrt{y^2-16} + C\), with an important identity noted: \(\arccos(u) + \arcsin(u) = \frac{\pi}{2}\).

PREREQUISITES
  • Understanding of trigonometric identities, specifically \(\tan^2\theta = \sec^2\theta - 1\)
  • Familiarity with trigonometric substitution techniques in calculus
  • Knowledge of integration techniques, particularly for rational functions
  • Ability to manipulate integrals and perform back substitution
NEXT STEPS
  • Study the method of trigonometric substitution in integrals
  • Learn about the properties and applications of inverse trigonometric functions
  • Explore advanced integration techniques, including integration by parts and partial fractions
  • Investigate the relationship between \(\arccos\) and \(\arcsin\) through various identities
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for effective methods to teach integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?
 
Physics news on Phys.org
It seems you are implying that:

$$\sec^2(\alpha)=\tan^2(\alpha)-1$$

and that's not an identity. :D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig substitution use identity $\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$

so far ?
 
Last edited:
Looks good so far...:D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
identity
$\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
back subst $\theta=
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$

$$I_{31}=-4\arccos\left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$

Got a sign and arcsin vs arccos ?
 
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$
 
$\tiny{206.8.4.31} \\
\text{Given (answer by maxima)}$
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
$\text{identity }
\displaystyle\tan^2\theta = \sec^2\theta - 1 $
$$\displaystyle y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
$\text{substitute}$
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
$\text{back substitute }
\displaystyle \theta=\sec^{-1}\left(\frac{y}{4}\right)$
$$I_{31}=4\arcsin \left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$
☕
 
Last edited:
MarkFL said:
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$

That helped. 😎😎
 
karush said:
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?

I would have made some manipulation to the integrand first to make the substitutions a little more obvious...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{y^2 - 16}}{y}\,\mathrm{d}y} &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y\,\sqrt{y^2 - 16}}\,\mathrm{d}y } \\ &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2 }{y^2} \left( \frac{y}{\sqrt{y^2 - 16}} \right) \,\mathrm{d}y } \end{align*}$

Now let $\displaystyle \begin{align*} u = \sqrt{y^2 - 16} \implies \mathrm{d}u = \frac{y}{\sqrt{y^2 - 16}}\,\mathrm{d}y \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y^2}\left( \frac{y}{\sqrt{y^2 - 16}} \right)\,\mathrm{d}y } &= \int{ \frac{u^2}{u^2 + 16}\,\mathrm{d}u } \\ &= \int{ \left( 1 - \frac{16}{u^2 + 16} \right) \,\mathrm{d}u } \\ &= \int{1\,\mathrm{d}u} - \int{ \frac{16}{u^2 + 16}\,\mathrm{d}u } \end{align*}$

and I'm sure you can continue from here...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
3
Views
1K
Replies
5
Views
2K