MHB How Is the Integral of sqrt(y^2-16)/y Solved Using Trigonometric Substitution?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The integral of sqrt(y^2-16)/y is solved using trigonometric substitution, specifically with y=4sec(θ), leading to the integral transforming into a form involving tan(θ). The solution yields I_{31} = 4arcsin(4/|y|) + sqrt(y^2-16) + C, with a connection to the identity arcsin(u) + arccos(u) = π/2. The discussion also highlights alternative approaches, including a substitution method that simplifies the integrand before applying trigonometric identities. Overall, the thread emphasizes the importance of recognizing identities and manipulation techniques in solving integrals effectively.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?
 
Physics news on Phys.org
It seems you are implying that:

$$\sec^2(\alpha)=\tan^2(\alpha)-1$$

and that's not an identity. :D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig substitution use identity $\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$

so far ?
 
Last edited:
Looks good so far...:D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
identity
$\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
back subst $\theta=
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$

$$I_{31}=-4\arccos\left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$

Got a sign and arcsin vs arccos ?
 
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$
 
$\tiny{206.8.4.31} \\
\text{Given (answer by maxima)}$
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
$\text{identity }
\displaystyle\tan^2\theta = \sec^2\theta - 1 $
$$\displaystyle y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
$\text{substitute}$
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
$\text{back substitute }
\displaystyle \theta=\sec^{-1}\left(\frac{y}{4}\right)$
$$I_{31}=4\arcsin \left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$
☕
 
Last edited:
MarkFL said:
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$

That helped. 😎😎
 
karush said:
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?

I would have made some manipulation to the integrand first to make the substitutions a little more obvious...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{y^2 - 16}}{y}\,\mathrm{d}y} &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y\,\sqrt{y^2 - 16}}\,\mathrm{d}y } \\ &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2 }{y^2} \left( \frac{y}{\sqrt{y^2 - 16}} \right) \,\mathrm{d}y } \end{align*}$

Now let $\displaystyle \begin{align*} u = \sqrt{y^2 - 16} \implies \mathrm{d}u = \frac{y}{\sqrt{y^2 - 16}}\,\mathrm{d}y \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y^2}\left( \frac{y}{\sqrt{y^2 - 16}} \right)\,\mathrm{d}y } &= \int{ \frac{u^2}{u^2 + 16}\,\mathrm{d}u } \\ &= \int{ \left( 1 - \frac{16}{u^2 + 16} \right) \,\mathrm{d}u } \\ &= \int{1\,\mathrm{d}u} - \int{ \frac{16}{u^2 + 16}\,\mathrm{d}u } \end{align*}$

and I'm sure you can continue from here...