How Is the Integral of sqrt(y^2-16)/y Solved Using Trigonometric Substitution?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around solving the integral of \(\frac{\sqrt{y^2-16}}{y}\) using trigonometric substitution. Participants explore various approaches, identities, and manipulations related to the integral, including the use of trigonometric identities and substitution techniques.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a solution involving trigonometric substitution \(y=4\tan(\theta)\) and provides an expression for the integral.
  • Another participant challenges the use of a trigonometric identity, suggesting a misunderstanding of the relationship between \(\sec^2(\alpha)\) and \(\tan^2(\alpha)\).
  • A participant reiterates the substitution \(y=4\sec(\theta)\) and derives an expression for the integral, leading to a discussion about the resulting forms of the answer.
  • There is a mention of a potential sign difference and confusion between \(\arcsin\) and \(\arccos\) in the final expression of the integral.
  • Hints are provided regarding the identity \(\arccos(u)+\arcsin(u)=\frac{\pi}{2}\) to help clarify the relationship between the two functions.
  • Another participant suggests an alternative manipulation of the integrand to make the substitutions clearer, introducing a new variable \(u = \sqrt{y^2 - 16}\) and transforming the integral accordingly.

Areas of Agreement / Disagreement

Participants express differing views on the correct application of trigonometric identities and the final form of the integral. There is no consensus on the resolution of the sign and function differences, indicating ongoing debate.

Contextual Notes

Some participants note potential manipulations of the integrand that could lead to clearer substitutions, but these suggestions remain unverified within the discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?
 
Physics news on Phys.org
It seems you are implying that:

$$\sec^2(\alpha)=\tan^2(\alpha)-1$$

and that's not an identity. :D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig substitution use identity $\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$

so far ?
 
Last edited:
Looks good so far...:D
 
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
identity
$\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
back subst $\theta=
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$

$$I_{31}=-4\arccos\left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$

Got a sign and arcsin vs arccos ?
 
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$
 
$\tiny{206.8.4.31} \\
\text{Given (answer by maxima)}$
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
$\text{identity }
\displaystyle\tan^2\theta = \sec^2\theta - 1 $
$$\displaystyle y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
$\text{substitute}$
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
$\text{back substitute }
\displaystyle \theta=\sec^{-1}\left(\frac{y}{4}\right)$
$$I_{31}=4\arcsin \left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$
☕
 
Last edited:
MarkFL said:
Hint: Consider the following identity:

$$\arccos(u)+\arcsin(u)=\frac{\pi}{2}$$

That helped. 😎😎
 
karush said:
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?

I would have made some manipulation to the integrand first to make the substitutions a little more obvious...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{y^2 - 16}}{y}\,\mathrm{d}y} &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y\,\sqrt{y^2 - 16}}\,\mathrm{d}y } \\ &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2 }{y^2} \left( \frac{y}{\sqrt{y^2 - 16}} \right) \,\mathrm{d}y } \end{align*}$

Now let $\displaystyle \begin{align*} u = \sqrt{y^2 - 16} \implies \mathrm{d}u = \frac{y}{\sqrt{y^2 - 16}}\,\mathrm{d}y \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y^2}\left( \frac{y}{\sqrt{y^2 - 16}} \right)\,\mathrm{d}y } &= \int{ \frac{u^2}{u^2 + 16}\,\mathrm{d}u } \\ &= \int{ \left( 1 - \frac{16}{u^2 + 16} \right) \,\mathrm{d}u } \\ &= \int{1\,\mathrm{d}u} - \int{ \frac{16}{u^2 + 16}\,\mathrm{d}u } \end{align*}$

and I'm sure you can continue from here...
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
3
Views
1K
Replies
5
Views
2K