MHB How many ways can you draw 3 of one suit and 2 of another suit?

  • Thread starter Thread starter nari
  • Start date Start date
Click For Summary
To determine the number of ways to draw 3 cards of one suit and 2 cards of another from a standard 52-card deck, the calculation involves three components: C(13, 3) for choosing 3 cards from one suit, C(13, 2) for choosing 2 cards from another suit, and C(4, 2) for selecting which two suits to use. The last component is crucial because it accounts for the different suit combinations, ensuring that combinations like 3 hearts and 2 spades are distinguished from 3 spades and 2 hearts. The initial calculations do not specify suits, hence the need for the additional factor. Understanding this distinction clarifies the overall counting method.
nari
Messages
4
Reaction score
0
Hi! I am completing a practice exam and there is this answer to a question that I do not understand. It says:

An experiment consists of drawing a hand of 5 cards from a standard deck of 52 cards. How many ways can you draw 3 of one suit and 2 of another suit?

I thought it was C(13, 3) x C(13,2). But it turns out it is C(13, 3) x C(13,2) x C(4,2). I don't understand where that last bit comes from. I know there are 4 suits, so I am guessing that bit is choosing two suits out of the four, but why is that not redundant when considering the first two parts of the answer?
 
Mathematics news on Phys.org
nari said:
Hi! I am completing a practice exam and there is this answer to a question that I do not understand. It says:

An experiment consists of drawing a hand of 5 cards from a standard deck of 52 cards. How many ways can you draw 3 of one suit and 2 of another suit?

I thought it was C(13, 3) x C(13,2). But it turns out it is C(13, 3) x C(13,2) x C(4,2). I don't understand where that last bit comes from. I know there are 4 suits, so I am guessing that bit is choosing two suits out of the four, but why is that not redundant when considering the first two parts of the answer?

Hi nari,

Welcome to MHB. :) This is a good question!

The first two parts, C(13, 3) x C(13,2), deal with choosing select cards from a pool in the appropriate way, but say nothing about the suit. For the first term, C(13, 3), this could be any of the 4 suits right? And then for the second expression, C(13,2), this could be from any of the 3 remaining suits. We haven't dealt with the problem of where the 13's come from yet. We are counting 3H2S the same as 3S2D right now.

That's where this last piece comes in. Does that make sense or help?
 
Jameson said:
Hi nari,

Welcome to MHB. :) This is a good question!

The first two parts, C(13, 3) x C(13,2), deal with choosing select cards from a pool in the appropriate way, but say nothing about the suit. For the first term, C(13, 3), this could be any of the 4 suits right? And then for the second expression, C(13,2), this could be from any of the 3 remaining suits. We haven't dealt with the problem of where the 13's come from yet. We are counting 3H2S the same as 3S2D right now.

That's where this last piece comes in. Does that make sense or help?

Yes, it does make sense! Thank you :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
3
Views
11K
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
11
Views
3K