cliffhanley203 said:
Thanks, Stephen. I looked up measure theory but it’s too advanced for me at the moment.
One way to conceptualize measure theory is that it is an abstract treatment of the idea of "area" or "volume". A set (such as the possible outcomes of the toss of a fair coin, {H,T}) has certain subsets (such as {H},{T}) for which there is a function p() that assigns a "measure" to the subsets (such as p{H} = 1/2, p{T} = 1/2). No interpretation of what the measure means is given.
Can you tell me in the meantime if I’ve understood part of what you said correctly. Pure maths, regards probability, is not based on any number of observed events (e.g, looking at thousands of spins of a roulette wheel) it’s purely theoretical.
Yes. The pure mathematical treatment of probability does not specify any physical experiments for measuring probabilities.
We ASSUME that with an unbiased roulette wheel and an unbiased croupier the ball has an equal chance of landing in any of the pockets and assign a probability accordingly (the P for each pocket is 1/37)?
I'll say no.
Making that statement seems to assume that "unbiased" is concept from physics and that "chance of" has either a physical definition or a mathematical definition that is more fundamental than the phrase "probability of". If you
define "unbiased roulette wheel" to mean a wheel where each outcome has an equal "chance of" happening and
define "chance of" to mean "probability of" then you can make the above statement - however, the statement is then "true by definition"; it has no significant content other than being a vocabulary exercise.
We have to face the fact that a logically consistent concept of "probability" contradicts any attempts to make definite assertions that do not themselves involve the concept of "probability". Probability theory is circular in that respect. For example if the probability that a "fair" coin is tossed 100 times, we can say nothing definite about whether it lands heads 50 times or whether it lands heads between 40 and 60 times. We can only compute the
probability that it lands heads 50 times and the
probability it lands heads between 40 and 60 times. Probability theory only makes statements about probabilities.
The circular nature of probability theory is unsatisfactory from the point of view of confronting real life problems. However the circular nature of probability theory is essential from the point of view of doing mathematics. Attempts to make probability theory say something definite about things other than probabilities lead to metaphysical disputes. (e.g. Can an event with probability zero happen? If I toss a fair coin long enough, will I (definitely) eventually get 3 times as many heads as tails? etc.) Mathematical probability theory wisely does not touch such questions!
Could you give me some examples of how they might differ in their assumptions regards my example of red v non-red?
Let say you have a roulette wheel not know to be "fair".
A frequentist approach is to assume the probability of red is a some fixed, but unknown number ##P_{red}##. We assume the wheel is fair, i.e. we assume ##P_{red} = 18/37##. We compute the probability ##p## that in 3700 results from the wheel we would get between ##1800 - T## and ##1800 + T## reds. We choose ##T## so that ##p## is "small" (e.g. p = 0.05 is a typical choice). We observe 3700 outcomes of the wheel. If the number of reds is less than ##1800-T## or greater than ##1800 + T## we "reject" the hypothesis that the wheel is fair.
In the frequentist approach, the choice of ##T## is subjective. The statement that we "reject" the hypothesis is not the same as saying definitely "The wheel is not fair" or asserting that the probability the wheel is not fair is such-and-such. The frequentist approach is simply a
procedure which has been found empirically to be useful in many fields of study.
A Bayesian approach would be to imagine the wheel in question was taken at random from a population of wheels and this results in some probability distribution for the number ##P_{red}##. (In this example, you must swallow the notion of "a probability of a probability"). For example we might assume the ##P_{red}## is chosen from a uniform distribution of numbers over the interval [0.4, 0.7]. We observe 3700 outcomes of the wheel and observe ##N_{red}## reds. Then we compute the function that gives us the probability that ##P_{red} = x ## given there were ##N_{red}## reds. (Imagine making a graph of this function.) Making a decision about whether the wheel is fair or not is done on the basis of that function and other assumed or known information that quantifies the expected gain or loss from making a correct or incorrect decision.
A fundamental distinction between the frequentist and Bayesian approaches is that the frequentist procedure involves computing the probability of the data
given the hypothesis that the wheel is fair while the Bayesian procedure involves computing the probability that ##P_{red}## takes various values
given the observed data. (There is a distinction between the conditional probabilities Pr(A given B) and Pr(B given A) ).
The frequentist and Bayesian procedures also differ in what subjective assumptions must be made. The Bayesian approach requires more elaborate assumptions.
People can offer various philosophical reasons for using the above approaches (e.g. that ##P_{red}## is an objective property of the physical wheel versus that ##P_{red}## is quantification of our ignorance about whether a red happens etc.). The mathematical procedures themselves do not specify particular philosophies or metaphysics. However, it's fair to say that metaphysical views about probabilities being a measure of information or ignorance can be used to justify Bayesian procedures.