1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

How much does the spring stretch?

  1. May 18, 2015 #1
    1. The problem statement, all variables and given/known data
    A mass ##m## body is attached to the spring and rests on the board so the spring is not stretched. The board starts to move with an acceleration ##a##. How much does the spring stretch at the moment when the board separate from the body?
    Picture.png
    2. Relevant equations
    Newton's Laws of Motion

    3. The attempt at a solution
    Here is my drawing:
    new.png

    I think that the board will separate from the body when ##kx=m_1a##, where ##m_1## is the mass of the board. I can't use ##m_1## since it is not given in the problem but I can't think a way to replace it.

    Is my reasoning correct and how can I replace ##m_1##?
     
  2. jcsd
  3. May 18, 2015 #2

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Hello Kaspis. Funny you should draw a picture with three forces and then mention only two to find the separation. And these two work on two different objects!

    Think about what the forces are on the mass m. There is a third one. And remember Newton 2.
     
  4. May 19, 2015 #3
    Here's the corrected image (please nevermind how the forces are represented, only directions matter here):
    onwPSAk.png
    I know that ##F_N=mg##, so ##F_N## should be 0 when ##kx=mg##, therefore ##x=\frac{mg}{k}##. Is that the answer?

    Update:
    Now that I think about it, the equation ##x=\frac{mg}{k}## should not suffice. The amount of stretch is clearly dependant on the acceleration with which the board is falling. For example, if the board is falling with many times bigger acceleration than ##g## it will surely separate from the board sooner than it would with smaller acceleration than ##g##. Thus, there must be some kind of relationship between board's acceleration and other forces.
     
    Last edited: May 19, 2015
  5. May 19, 2015 #4

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    How do you know ##F_N = mg## ? That is only when the board is at rest at the point where the extension of the spring is zero. Once there is acceleration that can't be true any more.
     
  6. May 19, 2015 #5
    Sorry, I'll apply Newton's second law here:
    ##kx+F_N-mg=-ma_1##, where ##a_1## is the acceleration with which the body is moving. Unfortunately, this doesn't help at all :frown:.

    Maybe I need to find the rate at which ##F_N## decreases and the rate at which ##m_1a## increases. Would that help?
     
  7. May 19, 2015 #6

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    ##a## is a given acceleration. As soon as ##F_N## hits 0, the mass comes off the board. Only one unknown: ##x## !
     
  8. May 19, 2015 #7
    Oh, so the equation should be like this:
    ##kx+F_N-mg=-ma##

    If ##F_N## is 0, then:
    ##kx-mg=-ma##
    ##x=\frac{m(g-a)}{k}##

    Is that correct?
     
  9. May 20, 2015 #8

    BvU

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What do you think ? Does it look plausible ?
    - it goes to ##kx = mg## for ##a## goes to 0, so that seems OK
    - if ##a = g## there is free fall from the start, so that looks OK too
    - there are no strange outsiders contributing (such as ##m_1##), which seems good

    I'm all in favour of this outcome ! Well done.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: How much does the spring stretch?
Loading...