How much time do I have to catch a coin?

AI Thread Summary
The discussion centers on the confusion regarding the initial velocity of a coin in relation to different frames of reference. One participant believes the coin's initial velocity is zero, while the other argues it has a velocity in the direction of the walkway. They clarify that acceleration and time are consistent across both frames, but the distance traveled by the coin differs. Ultimately, it is concluded that in Philipp's frame, the total distance the coin must travel includes both the distance due to acceleration and the distance due to its initial velocity. This resolution aligns the equations from both perspectives.
Lotto
Messages
251
Reaction score
16
Homework Statement
When riding up the inclined moving walkway of inclination ##α## and length ##l## a coin drops out of Philipp’s pocket when he is exactly in the middle of it. It falls into one of the grooves on the walkway and starts rolling down without slipping. How much time does Philipp have to catch the coin before it falls under the bottom edge of the walkway? The velocity of the moving walkway is ##v##.
Relevant Equations
I would use an euqation for a rotational kinetic energy ##\frac 12 I{\omega}^2## and an equation for a transfer kinetic energy ##\frac 12 mv^2##. ##I=\frac 12 mR^2##.
I am a bit confused with velocities in this problem. From Philipp's view, the coin's initial velocity is zero, so its transfer kinetic energy is also zero. When I am standing on a non-moving ground, is the coin's initial velocity ##v## in direction the walkway is moving? But won't I get then different times?

From Philipp's view: ##\frac 12 l=\frac 12 at^2##
From my view: ##\frac12 l=\frac 12 at^2-vt##

Where do I do a mistake?
 
Physics news on Phys.org
There are four quantities there. You've assumed correctly that ##a## and ##t## are the same in both frames. And, that ##v## is different in the two frames (##v = 0## in Philipp's frame). What about ##l##? Is that the same in both frames?
 
PeroK said:
There are four quantities there. You've assumed correctly that ##a## and ##t## are the same in both frames. And, that ##v## is different in the two frames (##v = 0## in Philipp's frame). What about ##l##? Is that the same in both frames?
Now I understand, in Philipp's frame, the total way the coin must travel is ##\frac 12 l+vt##, so then the equations are equivalent.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top