How much time do I have to catch a coin?

AI Thread Summary
The discussion centers on the confusion regarding the initial velocity of a coin in relation to different frames of reference. One participant believes the coin's initial velocity is zero, while the other argues it has a velocity in the direction of the walkway. They clarify that acceleration and time are consistent across both frames, but the distance traveled by the coin differs. Ultimately, it is concluded that in Philipp's frame, the total distance the coin must travel includes both the distance due to acceleration and the distance due to its initial velocity. This resolution aligns the equations from both perspectives.
Lotto
Messages
251
Reaction score
16
Homework Statement
When riding up the inclined moving walkway of inclination ##α## and length ##l## a coin drops out of Philipp’s pocket when he is exactly in the middle of it. It falls into one of the grooves on the walkway and starts rolling down without slipping. How much time does Philipp have to catch the coin before it falls under the bottom edge of the walkway? The velocity of the moving walkway is ##v##.
Relevant Equations
I would use an euqation for a rotational kinetic energy ##\frac 12 I{\omega}^2## and an equation for a transfer kinetic energy ##\frac 12 mv^2##. ##I=\frac 12 mR^2##.
I am a bit confused with velocities in this problem. From Philipp's view, the coin's initial velocity is zero, so its transfer kinetic energy is also zero. When I am standing on a non-moving ground, is the coin's initial velocity ##v## in direction the walkway is moving? But won't I get then different times?

From Philipp's view: ##\frac 12 l=\frac 12 at^2##
From my view: ##\frac12 l=\frac 12 at^2-vt##

Where do I do a mistake?
 
Physics news on Phys.org
There are four quantities there. You've assumed correctly that ##a## and ##t## are the same in both frames. And, that ##v## is different in the two frames (##v = 0## in Philipp's frame). What about ##l##? Is that the same in both frames?
 
PeroK said:
There are four quantities there. You've assumed correctly that ##a## and ##t## are the same in both frames. And, that ##v## is different in the two frames (##v = 0## in Philipp's frame). What about ##l##? Is that the same in both frames?
Now I understand, in Philipp's frame, the total way the coin must travel is ##\frac 12 l+vt##, so then the equations are equivalent.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top