MHB How Old is Lee Based on the Given Mathematical Problem?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Age
Click For Summary
Lee's age can be determined through a mathematical equation based on the ages of her siblings. The correct equation is x + (2x + 1) + (x - 3) = 26, where x represents Lee's age. Solving this equation yields x = 7, indicating that Lee is 7 years old. Misinterpretations in the initial setup led to incorrect conclusions, but clarifying the relationships among the siblings resolved the issue. Therefore, Lee is confirmed to be 7 years old.
mathdad
Messages
1,280
Reaction score
0
Lee has an older sister and a younger sister. Her older sister is one year more than twice Lee's age. Lee's younger sister is three years younger than she is. The sum of their three ages is 26. Find Lee's age?

My equation set up is

x + (2x + 1) + (2x + 1) - 3 = 26

This equation yields a fraction answer which is not possible in terms of age.

My answer is 27/5 as Lee's age.This cannot be right. What do you say?
 
Mathematics news on Phys.org
Hi RTCNTC,

It's important to write down what your variables represent. If $x$ represents Lee's age, then $x - 3$, not $(2x + 1) - 3$, represents the age of Lee's younger sister. The equation is then

$$x + (2x + 1) + (x - 3) = 26$$

yielding $x = 7$.
 
Euge said:
Hi RTCNTC,

It's important to write down what your variables represent. If $x$ represents Lee's age, then $x - 3$, not $(2x + 1) - 3$, represents the age of Lee's younger sister. The equation is then

$$x + (2x + 1) + (x - 3) = 26$$

yielding $x = 7$.

There is a typo in the application. Lee's younger sister is 3 years younger than him not the older sister. I also got x = 7. So, Lee is 7 years old.
 
My interpretation of the original problem is that "Lee" is a girl and the sentence "Lee's younger sister is three years younger than she is." means that the younger sister is three years younger than Lee.[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])
 
HallsofIvy said:
My interpretation of the original problem is that "Lee" is a girl and the sentence "Lee's younger sister is three years younger than she is." means that the younger sister is three years younger than Lee.[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main]2[FONT=MathJax_Main])[FONT=MathJax_Main]⊂[FONT=MathJax_Math]R[FONT=MathJax_Main]([FONT=MathJax_Math]T[FONT=MathJax_Main])
Well, the answer is x = 7.
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K