How should I show the following by using the signum function?

Click For Summary
The discussion revolves around evaluating the Fourier coefficients of the function f(θ) = sgn(sin(θ))sin²(θ) using the signum function. The integral of f(θ) over the interval [-π, π] is shown to be zero, leading to the conclusion that a₀ and aₖ coefficients are also zero, simplifying the Fourier series to only include bₖ terms. The participants explore how to compute bₖ by breaking down the integral and applying trigonometric identities, ultimately leading to the expression for bₖ in terms of sine functions. The conversation highlights the importance of correctly handling the signum function and the periodic nature of sine functions to derive the final result. The discussion concludes with a successful evaluation of bₖ, confirming the desired outcome.
Math100
Messages
816
Reaction score
229
Homework Statement
Show that ## \operatorname{sgn}(\sin\theta)sin^{2}\theta=\frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##.
Relevant Equations
The signum function is defined as ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Proof:

Let ## f(x) ## be a function of the real variable ## x ## such that the integral ## \int_{-\pi}^{\pi}f(x)dx ## exists and if the Fourier coefficients ## (a_{n}, b_{n}) ## are defined by ## a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx dx, n=0, 1, ..., ## and ## b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx dx, n=1, 2, ..., ## then the Fourier series of ## f(x) ## is the periodic function ## F(x)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{n}\cos nx+b_{n}\sin nx) ##.
Consider the function ## f(\theta)=\operatorname{sgn}(\sin\theta)sin^{2}\theta ##.
Then ## \int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)sin^{2}\theta d\theta=[\frac{1}{2}(\theta-\sin\theta\cos\theta)\operatorname{sgn}(sin\theta)]_{-\pi}^{\pi}=0 ## because ## \operatorname{sgn}(sin\pi)=0 ## and ## \operatorname{sgn}(sin(-\pi))=0 ##.
Note that ## a_{0}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos(0)d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta d\theta=\frac{1}{\pi}(0)=0 ##.
This gives ## a_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cos k\theta d\theta=0 ## for all ## n ## because ## f(\theta)=\operatorname{sgn}(sin\theta)sin^{2}\theta ## is an odd function and ## \cos k\theta ## is an even function.
Hence, ## F(\theta)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{k}\cos k\theta+b_{k}\sin k\theta)=\sum_{k=1}^{\infty}b_{k}\sin k\theta ## where ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)\sin k\theta d\theta ## for ## k=1, 2, ... ##.

From here, how should I evaluate/simplify ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta ## for ## k=1, 2, ... ## in order to get the right hand side of ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##? Where does ## sin((2k-1)\theta) ## come from? Is it because of the odd function and so we're only considering the ## 2k-1 ## terms? Or it might be the case that ## \operatorname{sgn}(\sin\theta)=1 ## from the signum function? Is everything correct in my work up to here?
 
Physics news on Phys.org
Notice that ##\operatorname{sgn}(\sin(\theta))\sin^2(\theta) = -\sin^2(\theta)## on the interval ##[-\pi, 0]## and ##\sin^2(\theta)## on the interval ##[0, \pi]##. So you should be working with two integrals for ##b_k##.
I'm not sure about the ##\sin((2k - 1)\theta)## part but they might be using the double angle identity for ##\cos(2\theta)## here. That is, ##\cos(2\theta) = 1 - 2\sin^2(\theta) \Rightarrow \sin^2(\theta) = \frac{1 - \cos(2\theta)}2##.
 
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;= <br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
 
pasmith said:
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;=<br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
So ## \sin^{2}\theta\sin k\theta=(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta=\frac{1}{2}[sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2})]=\frac{1}{2}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})=\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4} ##.
And I've got ## 2\int_{0}^{\pi}sin^{2}\theta\sin k\theta d\theta=2\int_{0}^{\pi}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4})d\theta=\frac{1}{2}\int_{0}^{\pi}(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\int_{0}^{\pi}sin k\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k+2)\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k-2)\theta d\theta=[\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}=\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2}) ##.
Thus, ## \int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin k\theta d\theta=-\frac{(sin(k+2)\cdot\pi+sin(k-2)\cdot\pi-4\sin k\theta)\pi}{4} ##.

From here, what should I do in order to find/evaluate ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)\sin^{2}\theta\cdot\sin k\theta d\theta ## for ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ##?
 
\sin k\theta means \sin(k\theta). Evaluate the integrals.
 
Last edited:
pasmith said:
\sin k\theta means \sin(k\theta). Evaluate the integrals.
Observe that ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}(sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2}))]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}({2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4}]d\theta=\frac{1}{4\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)\cdot(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\frac{1}{4\pi}[-\frac{\operatorname{sgn}(sin\theta)\cdot(\theta^{2}k\cos(2)\sin k+2\cos(\theta k))}{k}]_{-\pi}^{\pi}=\frac{1}{4\pi}[-\frac{2\cos(\pi k)}{k}+\frac{2\cos(-\pi k)}{k}]=0 ##.

So as a result, I've got ## b_{k}=0 ##, which means that ## \sum_{k=1}^{\infty}b_{k}\sin k\theta=0 ## but that doesn't makes sense because I didn't get the desired result as ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##. What's wrong in here?
 
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
 
  • Like
Likes Math100 and SammyS
pasmith said:
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
 
Last edited:
Math100 said:
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
 
  • Like
Likes Math100 and Mark44
  • #10
SammyS said:
Please break up those long lines of LATEX.
+1
 
  • #11
SammyS said:
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
Observe that ## b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
So we get
## b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2})-\frac{1}{2}(\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2}+\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{-2k(\cos(k\pi)-1)}{(k-2)(k+2)})] ##.
Thus
## b_{k}=\frac{1}{\pi}(\frac{1-\cos\pi k}{k}+\frac{k(\cos(k\pi)-1)}{(k-2)(k+2)})\implies
b_{k}=\frac{1}{\pi}(\frac{-(k-2)(k+2)(\cos(k\pi)-1)+k^{2}(\cos(k\pi)-1)}{k(k-2)(k+2)}\implies
b_{k}=\frac{1}{\pi}[\frac{(\cos(k\pi)-1)(k^{2}-(k-2)(k+2))}{k(k-2)(k+2)}]\implies
b_{k}=\frac{4}{\pi}(\frac{\cos(k\pi)-1}{k(k-2)(k+2)}) ##.

From here, how should I find/evaluate/simplify ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ## in order to get ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##?
 
  • #12
What is \cos(k\pi) for integer k?
 
  • #13
Math100 said:
Observe that
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
As already requested by @SammyS, please break up long lines of LaTeX so that a reader doesn't have to scroll off what's visible on the screen to see the far ends of them.

Like so:
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})##
##\implies b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##
 
  • Like
Likes Math100 and SammyS
  • #14
pasmith said:
What is \cos(k\pi) for integer k?
## \cos(k\pi)=-1 ## for odd integers ## k ##. And this has reminded me of something where I finally got the desired result/answer.
 
  • #15
Thank you, Pasmith, Sammy and Mark44.