How should I show the following by using the signum function?

Click For Summary
SUMMARY

The discussion centers on evaluating the Fourier coefficients of the function defined as \( f(\theta) = \operatorname{sgn}(\sin\theta)\sin^2\theta \). The integral \( b_k = \frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)\sin^2\theta\cdot\sin k\theta d\theta \) is simplified using trigonometric identities, leading to the conclusion that \( b_k = \frac{4}{\pi}\frac{\cos(k\pi)-1}{k(k-2)(k+2)} \). The final result for the series \( \sum_{k=1}^{\infty}b_k\sin k\theta \) converges to \( \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} \).

PREREQUISITES
  • Understanding of Fourier series and coefficients
  • Familiarity with the signum function and its properties
  • Knowledge of trigonometric identities and integrals
  • Basic calculus, particularly integration techniques
NEXT STEPS
  • Study the properties of the signum function in Fourier analysis
  • Learn about the convergence of Fourier series
  • Explore trigonometric identities relevant to Fourier coefficients
  • Investigate the implications of odd and even functions in Fourier expansions
USEFUL FOR

Mathematicians, students studying Fourier analysis, and anyone interested in advanced calculus and trigonometric functions.

Math100
Messages
817
Reaction score
230
Homework Statement
Show that ## \operatorname{sgn}(\sin\theta)sin^{2}\theta=\frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##.
Relevant Equations
The signum function is defined as ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Proof:

Let ## f(x) ## be a function of the real variable ## x ## such that the integral ## \int_{-\pi}^{\pi}f(x)dx ## exists and if the Fourier coefficients ## (a_{n}, b_{n}) ## are defined by ## a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx dx, n=0, 1, ..., ## and ## b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx dx, n=1, 2, ..., ## then the Fourier series of ## f(x) ## is the periodic function ## F(x)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{n}\cos nx+b_{n}\sin nx) ##.
Consider the function ## f(\theta)=\operatorname{sgn}(\sin\theta)sin^{2}\theta ##.
Then ## \int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)sin^{2}\theta d\theta=[\frac{1}{2}(\theta-\sin\theta\cos\theta)\operatorname{sgn}(sin\theta)]_{-\pi}^{\pi}=0 ## because ## \operatorname{sgn}(sin\pi)=0 ## and ## \operatorname{sgn}(sin(-\pi))=0 ##.
Note that ## a_{0}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos(0)d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta d\theta=\frac{1}{\pi}(0)=0 ##.
This gives ## a_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cos k\theta d\theta=0 ## for all ## n ## because ## f(\theta)=\operatorname{sgn}(sin\theta)sin^{2}\theta ## is an odd function and ## \cos k\theta ## is an even function.
Hence, ## F(\theta)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{k}\cos k\theta+b_{k}\sin k\theta)=\sum_{k=1}^{\infty}b_{k}\sin k\theta ## where ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)\sin k\theta d\theta ## for ## k=1, 2, ... ##.

From here, how should I evaluate/simplify ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta ## for ## k=1, 2, ... ## in order to get the right hand side of ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##? Where does ## sin((2k-1)\theta) ## come from? Is it because of the odd function and so we're only considering the ## 2k-1 ## terms? Or it might be the case that ## \operatorname{sgn}(\sin\theta)=1 ## from the signum function? Is everything correct in my work up to here?
 
Physics news on Phys.org
Notice that ##\operatorname{sgn}(\sin(\theta))\sin^2(\theta) = -\sin^2(\theta)## on the interval ##[-\pi, 0]## and ##\sin^2(\theta)## on the interval ##[0, \pi]##. So you should be working with two integrals for ##b_k##.
I'm not sure about the ##\sin((2k - 1)\theta)## part but they might be using the double angle identity for ##\cos(2\theta)## here. That is, ##\cos(2\theta) = 1 - 2\sin^2(\theta) \Rightarrow \sin^2(\theta) = \frac{1 - \cos(2\theta)}2##.
 
  • Like
Likes   Reactions: Math100
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;= <br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
 
  • Like
Likes   Reactions: Math100
pasmith said:
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;=<br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
So ## \sin^{2}\theta\sin k\theta=(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta=\frac{1}{2}[sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2})]=\frac{1}{2}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})=\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4} ##.
And I've got ## 2\int_{0}^{\pi}sin^{2}\theta\sin k\theta d\theta=2\int_{0}^{\pi}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4})d\theta=\frac{1}{2}\int_{0}^{\pi}(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\int_{0}^{\pi}sin k\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k+2)\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k-2)\theta d\theta=[\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}=\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2}) ##.
Thus, ## \int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin k\theta d\theta=-\frac{(sin(k+2)\cdot\pi+sin(k-2)\cdot\pi-4\sin k\theta)\pi}{4} ##.

From here, what should I do in order to find/evaluate ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)\sin^{2}\theta\cdot\sin k\theta d\theta ## for ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ##?
 
\sin k\theta means \sin(k\theta). Evaluate the integrals.
 
Last edited:
pasmith said:
\sin k\theta means \sin(k\theta). Evaluate the integrals.
Observe that ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}(sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2}))]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}({2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4}]d\theta=\frac{1}{4\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)\cdot(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\frac{1}{4\pi}[-\frac{\operatorname{sgn}(sin\theta)\cdot(\theta^{2}k\cos(2)\sin k+2\cos(\theta k))}{k}]_{-\pi}^{\pi}=\frac{1}{4\pi}[-\frac{2\cos(\pi k)}{k}+\frac{2\cos(-\pi k)}{k}]=0 ##.

So as a result, I've got ## b_{k}=0 ##, which means that ## \sum_{k=1}^{\infty}b_{k}\sin k\theta=0 ## but that doesn't makes sense because I didn't get the desired result as ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##. What's wrong in here?
 
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
 
  • Like
Likes   Reactions: Math100 and SammyS
pasmith said:
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
 
Last edited:
Math100 said:
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
 
  • Like
Likes   Reactions: Math100 and Mark44
  • #10
SammyS said:
Please break up those long lines of LATEX.
+1
 
  • Like
Likes   Reactions: Math100
  • #11
SammyS said:
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
Observe that ## b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
So we get
## b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2})-\frac{1}{2}(\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2}+\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{-2k(\cos(k\pi)-1)}{(k-2)(k+2)})] ##.
Thus
## b_{k}=\frac{1}{\pi}(\frac{1-\cos\pi k}{k}+\frac{k(\cos(k\pi)-1)}{(k-2)(k+2)})\implies
b_{k}=\frac{1}{\pi}(\frac{-(k-2)(k+2)(\cos(k\pi)-1)+k^{2}(\cos(k\pi)-1)}{k(k-2)(k+2)}\implies
b_{k}=\frac{1}{\pi}[\frac{(\cos(k\pi)-1)(k^{2}-(k-2)(k+2))}{k(k-2)(k+2)}]\implies
b_{k}=\frac{4}{\pi}(\frac{\cos(k\pi)-1}{k(k-2)(k+2)}) ##.

From here, how should I find/evaluate/simplify ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ## in order to get ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##?
 
  • #12
What is \cos(k\pi) for integer k?
 
  • Like
Likes   Reactions: Math100
  • #13
Math100 said:
Observe that
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
As already requested by @SammyS, please break up long lines of LaTeX so that a reader doesn't have to scroll off what's visible on the screen to see the far ends of them.

Like so:
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})##
##\implies b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##
 
  • Like
Likes   Reactions: Math100 and SammyS
  • #14
pasmith said:
What is \cos(k\pi) for integer k?
## \cos(k\pi)=-1 ## for odd integers ## k ##. And this has reminded me of something where I finally got the desired result/answer.
 
  • #15
Thank you, Pasmith, Sammy and Mark44.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K