How should I show the following by using the signum function?

Click For Summary

Homework Help Overview

The discussion revolves around the evaluation of Fourier coefficients for a function defined using the signum function, specifically focusing on the function f(θ) = sgn(sin(θ))sin²(θ). Participants are exploring how to simplify the integral for the Fourier coefficients and how the properties of the signum function influence the results.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the evaluation of the Fourier coefficient b_k and the implications of the signum function on the integral. There are questions about the appearance of sin((2k-1)θ) and whether it relates to the odd nature of the functions involved. Some suggest breaking the integral into two parts based on the intervals where the signum function changes.

Discussion Status

There is an ongoing exploration of different approaches to evaluate the integral for b_k, with some participants providing insights into trigonometric identities and the structure of the integrals. However, there is no explicit consensus on the correct path forward, as participants are still questioning assumptions and the implications of their calculations.

Contextual Notes

Participants are working under the constraints of evaluating Fourier coefficients, and there are indications of confusion regarding the signum function's behavior and its impact on the integrals. The discussion reflects a mix of correct and uncertain reasoning, particularly around the evaluation of integrals involving the signum function.

Math100
Messages
823
Reaction score
234
Homework Statement
Show that ## \operatorname{sgn}(\sin\theta)sin^{2}\theta=\frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##.
Relevant Equations
The signum function is defined as ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Proof:

Let ## f(x) ## be a function of the real variable ## x ## such that the integral ## \int_{-\pi}^{\pi}f(x)dx ## exists and if the Fourier coefficients ## (a_{n}, b_{n}) ## are defined by ## a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx dx, n=0, 1, ..., ## and ## b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx dx, n=1, 2, ..., ## then the Fourier series of ## f(x) ## is the periodic function ## F(x)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{n}\cos nx+b_{n}\sin nx) ##.
Consider the function ## f(\theta)=\operatorname{sgn}(\sin\theta)sin^{2}\theta ##.
Then ## \int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)sin^{2}\theta d\theta=[\frac{1}{2}(\theta-\sin\theta\cos\theta)\operatorname{sgn}(sin\theta)]_{-\pi}^{\pi}=0 ## because ## \operatorname{sgn}(sin\pi)=0 ## and ## \operatorname{sgn}(sin(-\pi))=0 ##.
Note that ## a_{0}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos(0)d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta d\theta=\frac{1}{\pi}(0)=0 ##.
This gives ## a_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cos k\theta d\theta=0 ## for all ## n ## because ## f(\theta)=\operatorname{sgn}(sin\theta)sin^{2}\theta ## is an odd function and ## \cos k\theta ## is an even function.
Hence, ## F(\theta)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{k}\cos k\theta+b_{k}\sin k\theta)=\sum_{k=1}^{\infty}b_{k}\sin k\theta ## where ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)\sin k\theta d\theta ## for ## k=1, 2, ... ##.

From here, how should I evaluate/simplify ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta ## for ## k=1, 2, ... ## in order to get the right hand side of ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##? Where does ## sin((2k-1)\theta) ## come from? Is it because of the odd function and so we're only considering the ## 2k-1 ## terms? Or it might be the case that ## \operatorname{sgn}(\sin\theta)=1 ## from the signum function? Is everything correct in my work up to here?
 
Physics news on Phys.org
Notice that ##\operatorname{sgn}(\sin(\theta))\sin^2(\theta) = -\sin^2(\theta)## on the interval ##[-\pi, 0]## and ##\sin^2(\theta)## on the interval ##[0, \pi]##. So you should be working with two integrals for ##b_k##.
I'm not sure about the ##\sin((2k - 1)\theta)## part but they might be using the double angle identity for ##\cos(2\theta)## here. That is, ##\cos(2\theta) = 1 - 2\sin^2(\theta) \Rightarrow \sin^2(\theta) = \frac{1 - \cos(2\theta)}2##.
 
  • Like
Likes   Reactions: Math100
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;= <br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
 
  • Like
Likes   Reactions: Math100
pasmith said:
Note that \begin{split}<br /> \int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &amp;=<br /> \int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\<br /> &amp;= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split} by oddness of \sin. Now the idea is to use trig identities to express \sin^2\theta \sin k\theta as a linear combination of sines. Setting \sin^2 \theta = (1 - \cos 2\theta)/2 is the first step; then you can use <br /> \cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.
So ## \sin^{2}\theta\sin k\theta=(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta=\frac{1}{2}[sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2})]=\frac{1}{2}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})=\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4} ##.
And I've got ## 2\int_{0}^{\pi}sin^{2}\theta\sin k\theta d\theta=2\int_{0}^{\pi}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4})d\theta=\frac{1}{2}\int_{0}^{\pi}(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\int_{0}^{\pi}sin k\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k+2)\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k-2)\theta d\theta=[\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}=\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2}) ##.
Thus, ## \int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin k\theta d\theta=-\frac{(sin(k+2)\cdot\pi+sin(k-2)\cdot\pi-4\sin k\theta)\pi}{4} ##.

From here, what should I do in order to find/evaluate ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)\sin^{2}\theta\cdot\sin k\theta d\theta ## for ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ##?
 
\sin k\theta means \sin(k\theta). Evaluate the integrals.
 
Last edited:
pasmith said:
\sin k\theta means \sin(k\theta). Evaluate the integrals.
Observe that ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}(sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2}))]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}({2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4}]d\theta=\frac{1}{4\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)\cdot(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\frac{1}{4\pi}[-\frac{\operatorname{sgn}(sin\theta)\cdot(\theta^{2}k\cos(2)\sin k+2\cos(\theta k))}{k}]_{-\pi}^{\pi}=\frac{1}{4\pi}[-\frac{2\cos(\pi k)}{k}+\frac{2\cos(-\pi k)}{k}]=0 ##.

So as a result, I've got ## b_{k}=0 ##, which means that ## \sum_{k=1}^{\infty}b_{k}\sin k\theta=0 ## but that doesn't makes sense because I didn't get the desired result as ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##. What's wrong in here?
 
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
 
  • Like
Likes   Reactions: Math100 and SammyS
pasmith said:
The \operatorname{sgn}(\sin \theta) is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with \begin{split}<br /> b_k &amp;= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\<br /> &amp;= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
 
Last edited:
Math100 said:
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
 
  • Like
Likes   Reactions: Math100 and Mark44
  • #10
SammyS said:
Please break up those long lines of LATEX.
+1
 
  • Like
Likes   Reactions: Math100
  • #11
SammyS said:
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
Observe that ## b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
So we get
## b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2})-\frac{1}{2}(\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2}+\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{-2k(\cos(k\pi)-1)}{(k-2)(k+2)})] ##.
Thus
## b_{k}=\frac{1}{\pi}(\frac{1-\cos\pi k}{k}+\frac{k(\cos(k\pi)-1)}{(k-2)(k+2)})\implies
b_{k}=\frac{1}{\pi}(\frac{-(k-2)(k+2)(\cos(k\pi)-1)+k^{2}(\cos(k\pi)-1)}{k(k-2)(k+2)}\implies
b_{k}=\frac{1}{\pi}[\frac{(\cos(k\pi)-1)(k^{2}-(k-2)(k+2))}{k(k-2)(k+2)}]\implies
b_{k}=\frac{4}{\pi}(\frac{\cos(k\pi)-1}{k(k-2)(k+2)}) ##.

From here, how should I find/evaluate/simplify ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ## in order to get ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##?
 
  • #12
What is \cos(k\pi) for integer k?
 
  • Like
Likes   Reactions: Math100
  • #13
Math100 said:
Observe that
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
As already requested by @SammyS, please break up long lines of LaTeX so that a reader doesn't have to scroll off what's visible on the screen to see the far ends of them.

Like so:
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})##
##\implies b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##
 
  • Like
Likes   Reactions: Math100 and SammyS
  • #14
pasmith said:
What is \cos(k\pi) for integer k?
## \cos(k\pi)=-1 ## for odd integers ## k ##. And this has reminded me of something where I finally got the desired result/answer.
 
  • #15
Thank you, Pasmith, Sammy and Mark44.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K