How should I use the averaging approximation to find this?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Approximation
Click For Summary
The discussion revolves around the use of the averaging approximation in solving non-autonomous differential equations. The first part establishes the equations for a system with variables a(t) and ψ(t), leading to non-autonomous differential equations that require the application of the averaging theorem. The second part analyzes a specific equation involving a limit cycle, emphasizing the conditions for stability and the calculation of g(a) to determine the amplitude and angular frequency. The user seeks clarification on applying the averaging theorem to both parts, particularly how to derive the amplitude A and angular frequency ω from the results obtained. Understanding the averaging theorem's role in simplifying the analysis of these oscillatory systems is crucial for accurate results.
Math100
Messages
816
Reaction score
229
Homework Statement
Consider the differential equation ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ##. Let ## x(t) ## and ## y(t)=\dot{x}(t) ## be expressed in terms of the polar coordinates ## a(t) ## and ## \theta(t) ## through ## x(t)=a(t)\cos\theta(t), y(t)=a(t)\sin\theta(t) ##. Note that ## a(t) ## and ## \theta(t) ## satisfy the following differential equations:
## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ##,
## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.

a) By letting ## \theta(t)=\psi(t)-t ##, transform Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## into non-autonomous differential equations for ## a(t) ## and ## \psi(t) ##. Hence use an averaging theorem to show that provided that ## \epsilon ## is small enough, Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## can be well approximated by ## \dot{a}=-\epsilon p_{0}(a), \dot{\theta}=-1-\frac{\epsilon r_{0}(a)}{a} ##, where ## p_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\sin u h(a\cos u, a\sin u)du, r_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\cos u h(a\cos u, a\sin u)du ##.

b) Now consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants. Use the averaging approximation of part (a) to show that the system has a stable limit cycle with amplitude ## A ## and angular frequency ## \omega ## given approximately by ## A=8^{1/4}b, \omega=1-\frac{1}{2}\epsilon\gamma b^4 ##. (Hint: Note the following identity: ## cos^{4}\theta\sin^{2}\theta=\frac{1}{16}+\frac{1}{32}\cos 2\theta-\frac{1}{16}\cos 4\theta-\frac{1}{32}\cos 6\theta. ##)
Relevant Equations
Not given.
a) Proof:

Consider the equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.
Let ## \theta(t)=\psi(t)-t ##.
Then ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##.
By direct substitution of ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##, we have ## \dot{\psi}(t)-1=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta)\implies \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.
Hence, the non-autonomous differential equations for ## a(t) ## and ## \psi(t) ## are ## \dot{a}(t)=-\epsilon\sin(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ## with ## \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.

b) Proof:

Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Note that the first-order approximation to the frequency ## \omega ## of the limit cycle equation is given by ## \omega=1+\frac{\epsilon}{2\pi a_{0}}\int_{0}^{2\pi} h(a_{0}\cos\theta, a_{0}\sin\theta)\cos\theta d\theta ##.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x} ## where ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
This gives ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt=\epsilon a\int_{0}^{2\pi} (a^{4}\cos^{4} t-b^{4})(-a\sin t) dt=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4} t-b^{4})\sin t dt ##.
Observe that ## g(a)=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4}t-b^{4})\sin t dt\implies g(a)=-\epsilon a^{2}(\int_{0}^{2\pi} a^{4}\cos^{4} t\cdot\sin t dt)+\epsilon a^{2}\int_{0}^{2\pi} b^{4}\sin t dt\implies g(a)=-\epsilon a^{6}\int_{0}^{2\pi}\cos^{4} t\cdot\sin t dt+\epsilon a^{2}b^{4}\int_{0}^{2\pi}\sint dt\implies g(a)=-\epsilon a^{6}(-\frac{1}{5}+\frac{1}{5})+\epsilon a^{2}b^{4}(-1+1) ##.
Hence, ## g(a)=0 ##.

Up to here, I don't think the result I've got from part b) is correct, since ## g(a)=0 ##. But I want to know what exactly is the averaging approximation from part (a) that I should use/apply in part b) to obtain the given amplitude and the angular frequency ## \omega ##. Also for part (a), after I've got non-autonomous differential equations, how should I use/apply the averaging theorem? I have limited resource and couldn't find the exact definition for the averaging theorem from my book.
 
Physics news on Phys.org
What "averaging theorems" do you know?
 
pasmith said:
What "averaging theorems" do you know?
I think I've made mistakes in part b). Here's what I've revised so far:
Part b) Proof:

By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, \lvert\epsilon\rvert<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4} ##, because ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}\implies \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x-\epsilon\gamma x\dot{x}^{4}=0\implies \ddot{x}+\epsilon[(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}]+x=0 ##.
Let ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
Note that ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}\implies h(x, y)=h(x, \dot{x})=(a^4\cos^{4} t-b^4)(-a\sin t)-\gamma(a\cos t)(-a\sin t)^{4} ##.
This gives ## h(x, y)=h(x, \dot{x})=ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t ##.
Observe that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt\implies g(a)=\epsilon a\int_{0}^{2\pi}(ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t)\sin t dt\implies g(a)=\epsilon a^{2}\int_{0}^{2\pi}(b^{4}\sin^{2} t-a^{4}\cos^{4} t\cdot\sin^{2} t-\gamma a^{4}\cos t\cdot\sin^{5} t)dt\implies g(a)=\epsilon a^{2}[b^{4}\int_{0}^{2\pi}\sin^{2} t dt-a^{4}\int_{0}^{2\pi}\cos^{4} t\cdot\sin^{2} t dt-\gamma a^{4}\int_{0}^{2\pi}\cos t\cdot\sin^{5} t dt]\implies g(a)=\epsilon a^{2}[b^{4}(\pi-0)-a^{4}(\frac{24\pi}{192}-0)-\gamma a^{4}(0)] ##.
Hence, ## g(a)=\epsilon a^{2}(b^{4}\pi-\frac{24a^{4}\pi}{192})=0\implies g(a)=\epsilon a^{2}(b^{4}\pi-\frac{a^{4}\pi}{8})=0\implies g(a)=\epsilon a^{2}\pi(b^{4}-\frac{a^{4}}{8})=0 ##, where ## b^{4}-\frac{a^{4}}{8}=0 ## for ## a\neq 0 ##, so ## a^{4}=8b^{4}\implies a=\pm 2^{3/4}\cdot b ##.
Since there are limit cycles at ## a=\pm 2^{3/4}\cdot b ##, it follows that ## g'(a)=\epsilon\pi(2ab^{4}-\frac{3a^{5}}{4}) ##.

Up to here, what should I do for part b) in order to find the given amplitude ## A ## and the angular frequency ## \omega ##? As for part a) and the averaging theorem, I've done research and found out that the averaging theorem talks about the system with the following form: ## \dot{x}=\epsilon f(x, t, \epsilon), 0\leq\epsilon<<1 ## of a phase space variable ## x ##. The fast oscillation is given by ## f ## versus a slow drift of ## \dot{x} ##. The averaging method yields an autonomous dynamical system ## \dot{y}=\epsilon\frac{1}{T}\int_{0}^{T} f(y, s, 0)ds=: \epsilon\bar{f}(y) ##. But how should I apply this on part a)?
 
Last edited:
How does the unperturbed system in part (a) behave?
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...