How should I use the averaging approximation to find this?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Approximation
Click For Summary
SUMMARY

The discussion focuses on applying the averaging approximation to analyze non-autonomous differential equations derived from a system of equations involving parameters ε, b, and γ. The first part establishes the equations for θ(t) and a(t) while the second part examines the stability of limit cycles in the context of the equation involving x and its derivatives. The averaging theorem is highlighted as a crucial tool for simplifying the analysis of these systems, particularly in determining the amplitude and angular frequency of the limit cycles.

PREREQUISITES
  • Understanding of non-autonomous differential equations
  • Familiarity with the averaging theorem in dynamical systems
  • Knowledge of limit cycle stability criteria
  • Basic concepts of phase space variables and perturbation methods
NEXT STEPS
  • Study the application of the averaging theorem in dynamical systems
  • Research stability analysis of limit cycles in nonlinear differential equations
  • Explore perturbation techniques in the context of differential equations
  • Learn about the behavior of unperturbed systems in dynamical analysis
USEFUL FOR

Mathematicians, physicists, and engineers working with dynamical systems, particularly those interested in stability analysis and the application of averaging methods to differential equations.

Math100
Messages
817
Reaction score
230
Homework Statement
Consider the differential equation ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ##. Let ## x(t) ## and ## y(t)=\dot{x}(t) ## be expressed in terms of the polar coordinates ## a(t) ## and ## \theta(t) ## through ## x(t)=a(t)\cos\theta(t), y(t)=a(t)\sin\theta(t) ##. Note that ## a(t) ## and ## \theta(t) ## satisfy the following differential equations:
## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ##,
## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.

a) By letting ## \theta(t)=\psi(t)-t ##, transform Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## into non-autonomous differential equations for ## a(t) ## and ## \psi(t) ##. Hence use an averaging theorem to show that provided that ## \epsilon ## is small enough, Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## can be well approximated by ## \dot{a}=-\epsilon p_{0}(a), \dot{\theta}=-1-\frac{\epsilon r_{0}(a)}{a} ##, where ## p_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\sin u h(a\cos u, a\sin u)du, r_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\cos u h(a\cos u, a\sin u)du ##.

b) Now consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants. Use the averaging approximation of part (a) to show that the system has a stable limit cycle with amplitude ## A ## and angular frequency ## \omega ## given approximately by ## A=8^{1/4}b, \omega=1-\frac{1}{2}\epsilon\gamma b^4 ##. (Hint: Note the following identity: ## cos^{4}\theta\sin^{2}\theta=\frac{1}{16}+\frac{1}{32}\cos 2\theta-\frac{1}{16}\cos 4\theta-\frac{1}{32}\cos 6\theta. ##)
Relevant Equations
Not given.
a) Proof:

Consider the equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.
Let ## \theta(t)=\psi(t)-t ##.
Then ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##.
By direct substitution of ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##, we have ## \dot{\psi}(t)-1=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta)\implies \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.
Hence, the non-autonomous differential equations for ## a(t) ## and ## \psi(t) ## are ## \dot{a}(t)=-\epsilon\sin(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ## with ## \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.

b) Proof:

Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Note that the first-order approximation to the frequency ## \omega ## of the limit cycle equation is given by ## \omega=1+\frac{\epsilon}{2\pi a_{0}}\int_{0}^{2\pi} h(a_{0}\cos\theta, a_{0}\sin\theta)\cos\theta d\theta ##.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x} ## where ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
This gives ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt=\epsilon a\int_{0}^{2\pi} (a^{4}\cos^{4} t-b^{4})(-a\sin t) dt=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4} t-b^{4})\sin t dt ##.
Observe that ## g(a)=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4}t-b^{4})\sin t dt\implies g(a)=-\epsilon a^{2}(\int_{0}^{2\pi} a^{4}\cos^{4} t\cdot\sin t dt)+\epsilon a^{2}\int_{0}^{2\pi} b^{4}\sin t dt\implies g(a)=-\epsilon a^{6}\int_{0}^{2\pi}\cos^{4} t\cdot\sin t dt+\epsilon a^{2}b^{4}\int_{0}^{2\pi}\sint dt\implies g(a)=-\epsilon a^{6}(-\frac{1}{5}+\frac{1}{5})+\epsilon a^{2}b^{4}(-1+1) ##.
Hence, ## g(a)=0 ##.

Up to here, I don't think the result I've got from part b) is correct, since ## g(a)=0 ##. But I want to know what exactly is the averaging approximation from part (a) that I should use/apply in part b) to obtain the given amplitude and the angular frequency ## \omega ##. Also for part (a), after I've got non-autonomous differential equations, how should I use/apply the averaging theorem? I have limited resource and couldn't find the exact definition for the averaging theorem from my book.
 
Physics news on Phys.org
What "averaging theorems" do you know?
 
pasmith said:
What "averaging theorems" do you know?
I think I've made mistakes in part b). Here's what I've revised so far:
Part b) Proof:

By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, \lvert\epsilon\rvert<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4} ##, because ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}\implies \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x-\epsilon\gamma x\dot{x}^{4}=0\implies \ddot{x}+\epsilon[(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}]+x=0 ##.
Let ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
Note that ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}\implies h(x, y)=h(x, \dot{x})=(a^4\cos^{4} t-b^4)(-a\sin t)-\gamma(a\cos t)(-a\sin t)^{4} ##.
This gives ## h(x, y)=h(x, \dot{x})=ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t ##.
Observe that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt\implies g(a)=\epsilon a\int_{0}^{2\pi}(ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t)\sin t dt\implies g(a)=\epsilon a^{2}\int_{0}^{2\pi}(b^{4}\sin^{2} t-a^{4}\cos^{4} t\cdot\sin^{2} t-\gamma a^{4}\cos t\cdot\sin^{5} t)dt\implies g(a)=\epsilon a^{2}[b^{4}\int_{0}^{2\pi}\sin^{2} t dt-a^{4}\int_{0}^{2\pi}\cos^{4} t\cdot\sin^{2} t dt-\gamma a^{4}\int_{0}^{2\pi}\cos t\cdot\sin^{5} t dt]\implies g(a)=\epsilon a^{2}[b^{4}(\pi-0)-a^{4}(\frac{24\pi}{192}-0)-\gamma a^{4}(0)] ##.
Hence, ## g(a)=\epsilon a^{2}(b^{4}\pi-\frac{24a^{4}\pi}{192})=0\implies g(a)=\epsilon a^{2}(b^{4}\pi-\frac{a^{4}\pi}{8})=0\implies g(a)=\epsilon a^{2}\pi(b^{4}-\frac{a^{4}}{8})=0 ##, where ## b^{4}-\frac{a^{4}}{8}=0 ## for ## a\neq 0 ##, so ## a^{4}=8b^{4}\implies a=\pm 2^{3/4}\cdot b ##.
Since there are limit cycles at ## a=\pm 2^{3/4}\cdot b ##, it follows that ## g'(a)=\epsilon\pi(2ab^{4}-\frac{3a^{5}}{4}) ##.

Up to here, what should I do for part b) in order to find the given amplitude ## A ## and the angular frequency ## \omega ##? As for part a) and the averaging theorem, I've done research and found out that the averaging theorem talks about the system with the following form: ## \dot{x}=\epsilon f(x, t, \epsilon), 0\leq\epsilon<<1 ## of a phase space variable ## x ##. The fast oscillation is given by ## f ## versus a slow drift of ## \dot{x} ##. The averaging method yields an autonomous dynamical system ## \dot{y}=\epsilon\frac{1}{T}\int_{0}^{T} f(y, s, 0)ds=: \epsilon\bar{f}(y) ##. But how should I apply this on part a)?
 
Last edited:
How does the unperturbed system in part (a) behave?
 

Similar threads

Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
2K