How should I use the averaging approximation to find this?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Approximation
Click For Summary

Homework Help Overview

The discussion revolves around the application of averaging approximations in the context of differential equations related to dynamical systems. The original poster presents two parts of a proof involving non-autonomous differential equations and limit cycles, seeking clarification on how to apply the averaging theorem effectively.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to derive equations for a dynamical system and questions the correctness of their results. They seek guidance on applying the averaging theorem to their proofs. Other participants inquire about the nature of averaging theorems and the behavior of the unperturbed system.

Discussion Status

Participants are actively exploring the definitions and implications of averaging theorems. The original poster has revised their approach and is seeking further clarification on how to find amplitude and angular frequency in their proof. There is a focus on understanding the behavior of the system and how to apply theoretical concepts to their specific problem.

Contextual Notes

The original poster mentions limited resources and expresses uncertainty regarding the averaging theorem's definition. They also note the conditions under which their equations are valid, specifically the small parameter epsilon.

Math100
Messages
823
Reaction score
234
Homework Statement
Consider the differential equation ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ##. Let ## x(t) ## and ## y(t)=\dot{x}(t) ## be expressed in terms of the polar coordinates ## a(t) ## and ## \theta(t) ## through ## x(t)=a(t)\cos\theta(t), y(t)=a(t)\sin\theta(t) ##. Note that ## a(t) ## and ## \theta(t) ## satisfy the following differential equations:
## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ##,
## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.

a) By letting ## \theta(t)=\psi(t)-t ##, transform Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## into non-autonomous differential equations for ## a(t) ## and ## \psi(t) ##. Hence use an averaging theorem to show that provided that ## \epsilon ## is small enough, Equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ## can be well approximated by ## \dot{a}=-\epsilon p_{0}(a), \dot{\theta}=-1-\frac{\epsilon r_{0}(a)}{a} ##, where ## p_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\sin u h(a\cos u, a\sin u)du, r_{0}(a)=\frac{1}{2\pi}\int_{0}^{2\pi}\cos u h(a\cos u, a\sin u)du ##.

b) Now consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants. Use the averaging approximation of part (a) to show that the system has a stable limit cycle with amplitude ## A ## and angular frequency ## \omega ## given approximately by ## A=8^{1/4}b, \omega=1-\frac{1}{2}\epsilon\gamma b^4 ##. (Hint: Note the following identity: ## cos^{4}\theta\sin^{2}\theta=\frac{1}{16}+\frac{1}{32}\cos 2\theta-\frac{1}{16}\cos 4\theta-\frac{1}{32}\cos 6\theta. ##)
Relevant Equations
Not given.
a) Proof:

Consider the equations ## \dot{a}=-\epsilon\sin\theta h(a\cos\theta, a\sin\theta) ## and ## \dot{\theta}=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta) ##.
Let ## \theta(t)=\psi(t)-t ##.
Then ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##.
By direct substitution of ## \dot{\theta}(t)=\dot{\psi}(t)-1 ##, we have ## \dot{\psi}(t)-1=-1-\frac{\epsilon}{a}\cos\theta h(a\cos\theta, a\sin\theta)\implies \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.
Hence, the non-autonomous differential equations for ## a(t) ## and ## \psi(t) ## are ## \dot{a}(t)=-\epsilon\sin(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ## with ## \dot{\psi}(t)=-\frac{\epsilon}{a}\cos(\psi(t)-t)\cdot h(a(t)\cos(\psi(t)-t), a(t)\sin(\psi(t)-t)) ##.

b) Proof:

Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^4, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, 0<\epsilon<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Note that the first-order approximation to the frequency ## \omega ## of the limit cycle equation is given by ## \omega=1+\frac{\epsilon}{2\pi a_{0}}\int_{0}^{2\pi} h(a_{0}\cos\theta, a_{0}\sin\theta)\cos\theta d\theta ##.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x} ## where ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
This gives ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt=\epsilon a\int_{0}^{2\pi} (a^{4}\cos^{4} t-b^{4})(-a\sin t) dt=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4} t-b^{4})\sin t dt ##.
Observe that ## g(a)=-\epsilon a^{2}\int_{0}^{2\pi}(a^{4}\cos^{4}t-b^{4})\sin t dt\implies g(a)=-\epsilon a^{2}(\int_{0}^{2\pi} a^{4}\cos^{4} t\cdot\sin t dt)+\epsilon a^{2}\int_{0}^{2\pi} b^{4}\sin t dt\implies g(a)=-\epsilon a^{6}\int_{0}^{2\pi}\cos^{4} t\cdot\sin t dt+\epsilon a^{2}b^{4}\int_{0}^{2\pi}\sint dt\implies g(a)=-\epsilon a^{6}(-\frac{1}{5}+\frac{1}{5})+\epsilon a^{2}b^{4}(-1+1) ##.
Hence, ## g(a)=0 ##.

Up to here, I don't think the result I've got from part b) is correct, since ## g(a)=0 ##. But I want to know what exactly is the averaging approximation from part (a) that I should use/apply in part b) to obtain the given amplitude and the angular frequency ## \omega ##. Also for part (a), after I've got non-autonomous differential equations, how should I use/apply the averaging theorem? I have limited resource and couldn't find the exact definition for the averaging theorem from my book.
 
Physics news on Phys.org
What "averaging theorems" do you know?
 
pasmith said:
What "averaging theorems" do you know?
I think I've made mistakes in part b). Here's what I've revised so far:
Part b) Proof:

By definition, the system ## \ddot{x}+\epsilon h(x, \dot{x})+x=0, \lvert\epsilon\rvert<<1 ## has an approximately circular limit cycle given by the equations ## x=a_{0}\cos\omega t, y=\dot{x}=-a_{0}\sin\omega t, \omega=1 ##, where ## a_{0} ## satisfies the equation ## g(a)=0 ## such that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt ##. The limit cycle is stable if ## g'(a_{0})<0 ## and unstable if ## g'(a_{0})>0 ##.
Consider the equation ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}, 0<\epsilon<<1, b>0 ##, where ## b ## and ## \gamma ## are constants.
Then we have ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4} ##, because ## \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x=\epsilon\gamma x\dot{x}^{4}\implies \ddot{x}+\epsilon(x^4-b^4)\dot{x}+x-\epsilon\gamma x\dot{x}^{4}=0\implies \ddot{x}+\epsilon[(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}]+x=0 ##.
Let ## x=a\cos t ## and ## y=\dot{x}=-a\sin t ##.
Note that ## h(x, y)=h(x, \dot{x})=(x^4-b^4)\dot{x}-\gamma x\dot{x}^{4}\implies h(x, y)=h(x, \dot{x})=(a^4\cos^{4} t-b^4)(-a\sin t)-\gamma(a\cos t)(-a\sin t)^{4} ##.
This gives ## h(x, y)=h(x, \dot{x})=ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t ##.
Observe that ## g(a)=\epsilon a\int_{0}^{2\pi} h(a\cos t, -a\sin t)\sin t dt\implies g(a)=\epsilon a\int_{0}^{2\pi}(ab^{4}\sin t-a^{5}\cos^{4} t\cdot\sin t-\gamma a^{5}\cos t\cdot\sin^{4} t)\sin t dt\implies g(a)=\epsilon a^{2}\int_{0}^{2\pi}(b^{4}\sin^{2} t-a^{4}\cos^{4} t\cdot\sin^{2} t-\gamma a^{4}\cos t\cdot\sin^{5} t)dt\implies g(a)=\epsilon a^{2}[b^{4}\int_{0}^{2\pi}\sin^{2} t dt-a^{4}\int_{0}^{2\pi}\cos^{4} t\cdot\sin^{2} t dt-\gamma a^{4}\int_{0}^{2\pi}\cos t\cdot\sin^{5} t dt]\implies g(a)=\epsilon a^{2}[b^{4}(\pi-0)-a^{4}(\frac{24\pi}{192}-0)-\gamma a^{4}(0)] ##.
Hence, ## g(a)=\epsilon a^{2}(b^{4}\pi-\frac{24a^{4}\pi}{192})=0\implies g(a)=\epsilon a^{2}(b^{4}\pi-\frac{a^{4}\pi}{8})=0\implies g(a)=\epsilon a^{2}\pi(b^{4}-\frac{a^{4}}{8})=0 ##, where ## b^{4}-\frac{a^{4}}{8}=0 ## for ## a\neq 0 ##, so ## a^{4}=8b^{4}\implies a=\pm 2^{3/4}\cdot b ##.
Since there are limit cycles at ## a=\pm 2^{3/4}\cdot b ##, it follows that ## g'(a)=\epsilon\pi(2ab^{4}-\frac{3a^{5}}{4}) ##.

Up to here, what should I do for part b) in order to find the given amplitude ## A ## and the angular frequency ## \omega ##? As for part a) and the averaging theorem, I've done research and found out that the averaging theorem talks about the system with the following form: ## \dot{x}=\epsilon f(x, t, \epsilon), 0\leq\epsilon<<1 ## of a phase space variable ## x ##. The fast oscillation is given by ## f ## versus a slow drift of ## \dot{x} ##. The averaging method yields an autonomous dynamical system ## \dot{y}=\epsilon\frac{1}{T}\int_{0}^{T} f(y, s, 0)ds=: \epsilon\bar{f}(y) ##. But how should I apply this on part a)?
 
Last edited:
How does the unperturbed system in part (a) behave?
 

Similar threads

Replies
6
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
2
Views
2K