MHB How should this matrix be multiplied

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
The discussion focuses on the multiplication of two matrices, A and B, where A is a 1x2 matrix and B is a 2x1 matrix. The resulting matrix AB is a 1x1 matrix, calculated by taking the inner product of A's row and B's column. The calculation shows that c_{11} equals 7, leading to the result AB being a 1x1 matrix with the value of 7. Additionally, the process for determining which rows and columns to multiply is clarified, emphasizing that each row of A is multiplied with each column of B to form the resulting matrix.
mathlearn
Messages
331
Reaction score
0
$A=\begin{bmatrix}
3&2\\
\end{bmatrix} B=\begin{bmatrix}
1\\
2\end{bmatrix}$

Find the value of the matrix $AB$.

The order of the first matrix is 1*2

The order of the second matrix is 2*1

Matrix AB should be 1*1

I am a bit struggling in determining the way that these two matrices should be multiplied

Many thanks :)
 
Mathematics news on Phys.org
You are correct about the order of the matrices! (Yes)

We have the following:
$$AB=\begin{bmatrix}
3&2\\
\end{bmatrix} \begin{bmatrix}
1\\
2\end{bmatrix}=\begin{bmatrix}
c_{11}
\end{bmatrix}$$

To calculate the element $c_{11}$ we have to multiply the $1$st row of $A$ with the $1$st column of $B$, as an inner product. So we get the following:
$$c_{11}=3\cdot 1+2\cdot 2=3+4=7$$ So, the result is $$AB=\begin{bmatrix}
7
\end{bmatrix}$$
 
mathmari said:
You are correct about the order of the matrices! (Yes)

We have the following:
$$AB=\begin{bmatrix}
3&2\\
\end{bmatrix} \begin{bmatrix}
1\\
2\end{bmatrix}=\begin{bmatrix}
c_{11}
\end{bmatrix}$$

To calculate the element $c_{11}$ we have to multiply the $1$st row of $A$ with the $1$st column of $B$, as an inner product. So we get the following:
$$c_{11}=3\cdot 1+2\cdot 2=3+4=7$$ So, the result is $$AB=\begin{bmatrix}
7
\end{bmatrix}$$

Thanks :) I can see it in this problem now

But how do we know which row are to be multiplied with what column ?
 
mathlearn said:
But how do we know which row are to be multiplied with what column ?

Let $A=\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}$ and $B=\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}$.

We have the following:
$$AB=\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}=\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{pmatrix}$$ To calculate the element $c_{ij}$ we have to multiply the $i$-th row of $A$ with the $j$-th column of $B$, as an inner product.

So, we get the following elements:
$$c_{11}=1\cdot 1+2\cdot 3+3\cdot 5=1+6+15=22 \\
c_{12}=1\cdot 2+2\cdot 4+3\cdot 6=2+8+18=28 \\
c_{21}=4\cdot 1+5\cdot 3+6\cdot 5=4+15+30=49 \\
c_{22}=4\cdot 2+5\cdot 4+6\cdot 6=8+20+36=64 \\
c_{31}=7\cdot 1+8\cdot 3+9\cdot 5=7+24+45=76 \\
c_{32}=7\cdot 2+8\cdot 4+9\cdot 6=14+32+54=100$$ Therefore, the result is the following:
$$AB=\begin{pmatrix}
22 & 28 \\
49 & 64 \\
76 & 100
\end{pmatrix}$$
 
mathlearn said:
Thanks :) I can see it in this problem now

But how do we know which row are to be multiplied with what column ?
To multiply AB, all rows of A are multiplied with all columns of B.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K