MHB How should this matrix be multiplied

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Matrix
Click For Summary
SUMMARY

The discussion focuses on the multiplication of matrices, specifically the matrices A and B defined as $A=\begin{bmatrix} 3&2\\ \end{bmatrix}$ and $B=\begin{bmatrix} 1\\ 2\end{bmatrix}$. The resulting matrix $AB$ is calculated to be $AB=\begin{bmatrix} 7 \end{bmatrix}$, derived from the inner product of the first row of A and the first column of B. Additionally, the discussion elaborates on the general rule for matrix multiplication, emphasizing that the $i$-th row of matrix A is multiplied with the $j$-th column of matrix B to compute each element of the resulting matrix.

PREREQUISITES
  • Understanding of matrix dimensions and orders
  • Familiarity with matrix multiplication rules
  • Knowledge of inner product calculations
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of matrix multiplication
  • Learn about different types of matrices, such as identity and zero matrices
  • Explore advanced matrix operations, including transposition and inversion
  • Investigate applications of matrix multiplication in linear transformations
USEFUL FOR

Students and professionals in mathematics, computer science, and engineering who are learning or applying concepts of linear algebra and matrix operations.

mathlearn
Messages
331
Reaction score
0
$A=\begin{bmatrix}
3&2\\
\end{bmatrix} B=\begin{bmatrix}
1\\
2\end{bmatrix}$

Find the value of the matrix $AB$.

The order of the first matrix is 1*2

The order of the second matrix is 2*1

Matrix AB should be 1*1

I am a bit struggling in determining the way that these two matrices should be multiplied

Many thanks :)
 
Mathematics news on Phys.org
You are correct about the order of the matrices! (Yes)

We have the following:
$$AB=\begin{bmatrix}
3&2\\
\end{bmatrix} \begin{bmatrix}
1\\
2\end{bmatrix}=\begin{bmatrix}
c_{11}
\end{bmatrix}$$

To calculate the element $c_{11}$ we have to multiply the $1$st row of $A$ with the $1$st column of $B$, as an inner product. So we get the following:
$$c_{11}=3\cdot 1+2\cdot 2=3+4=7$$ So, the result is $$AB=\begin{bmatrix}
7
\end{bmatrix}$$
 
mathmari said:
You are correct about the order of the matrices! (Yes)

We have the following:
$$AB=\begin{bmatrix}
3&2\\
\end{bmatrix} \begin{bmatrix}
1\\
2\end{bmatrix}=\begin{bmatrix}
c_{11}
\end{bmatrix}$$

To calculate the element $c_{11}$ we have to multiply the $1$st row of $A$ with the $1$st column of $B$, as an inner product. So we get the following:
$$c_{11}=3\cdot 1+2\cdot 2=3+4=7$$ So, the result is $$AB=\begin{bmatrix}
7
\end{bmatrix}$$

Thanks :) I can see it in this problem now

But how do we know which row are to be multiplied with what column ?
 
mathlearn said:
But how do we know which row are to be multiplied with what column ?

Let $A=\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}$ and $B=\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}$.

We have the following:
$$AB=\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix}=\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22} \\
c_{31} & c_{32}
\end{pmatrix}$$ To calculate the element $c_{ij}$ we have to multiply the $i$-th row of $A$ with the $j$-th column of $B$, as an inner product.

So, we get the following elements:
$$c_{11}=1\cdot 1+2\cdot 3+3\cdot 5=1+6+15=22 \\
c_{12}=1\cdot 2+2\cdot 4+3\cdot 6=2+8+18=28 \\
c_{21}=4\cdot 1+5\cdot 3+6\cdot 5=4+15+30=49 \\
c_{22}=4\cdot 2+5\cdot 4+6\cdot 6=8+20+36=64 \\
c_{31}=7\cdot 1+8\cdot 3+9\cdot 5=7+24+45=76 \\
c_{32}=7\cdot 2+8\cdot 4+9\cdot 6=14+32+54=100$$ Therefore, the result is the following:
$$AB=\begin{pmatrix}
22 & 28 \\
49 & 64 \\
76 & 100
\end{pmatrix}$$
 
mathlearn said:
Thanks :) I can see it in this problem now

But how do we know which row are to be multiplied with what column ?
To multiply AB, all rows of A are multiplied with all columns of B.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K