Undergrad How to apply tensor transformation rule

Click For Summary
The discussion centers on the application of the tensor transformation rule to position vectors in Cartesian and polar coordinate systems. It clarifies that while the position vector can be expressed in polar coordinates, it primarily has a radial component, meaning the angular component does not contribute to its transformation. The transformation rule applies correctly when considering the radial component, as demonstrated with the equations for converting from polar to Cartesian coordinates. The confusion arises from the misconception that both radial and angular components are necessary for the position vector, but only the radial component is relevant. Ultimately, the position vector in polar coordinates is represented solely by its radial component, confirming the application of the tensor transformation rule.
guv
Messages
122
Reaction score
22
TL;DR
how is the tensor transformation rule applied on a position vector? $$v^\alpha = v^{*\beta} \frac{\partial u^\alpha}{\partial u^{* \beta}}$$
Suppose I have a Cartesian Coordinate system (x,y) and a polar coordinate system (##r, \theta##). The position vector (3,4) and (5, ##\arctan \frac{4}{3}##) are the same except the representation. The position vector is a tensor, how does the position vector follow the tensor transformation rule? Surely I cannot write ##x = r \frac{\partial x}{\partial r} + \theta \frac{\partial x}{\partial \theta}##

It's clear for a function ##f(x(r, \theta),y(r, \theta))##, its derivative ##\frac{\partial f}{\partial r}## which is the gradient vector follows the transformation rule.

Does the transformation rule apply to a position vector?
 
Physics news on Phys.org
guv said:
Surely I cannot write ##x = r \frac{\partial x}{\partial r} + \theta \frac{\partial x}{\partial \theta}##
You can obviously write it (you just did), but it would be very wrong in general.

guv said:
Does the transformation rule apply to a position vector?
Yes! Try it in polar coordinates on the Euclidean plane!

$$
x = r \cos(\theta), \quad y = r\sin(\theta)
$$
 
Thanks, I know how ##x = r \cos \theta , y = r \sin \theta## works. What makes me wonder is why you can't use the tensor transformation rule on the position as I initially wrote.
 
You can if you do it correctly.
 
Would you mind showing how that works, I am very curious to see how. Thanks!
 
For example, the position vector in polar coordinates is ##X = r\partial_r##. In other words, the only non-zero component is ##X^r##. Hence
$$
X^x = X^r \frac{\partial x}{\partial r}
= r \cos(\theta) = x
$$
Similarly for the y-component.
 
Don't you need to include both ##r## and ##\theta##? i.e. exactly what I wrote initially? :cool: Why is ##r## non-zero but ##\theta## is zero? ##\theta## is not necessarily zero? Sorry I am not getting it.
 
guv said:
Don't you need to include both ##r## and ##\theta##? i.e. exactly what I wrote initially? :cool: Why is ##r## non-zero but ##\theta## is zero? ##\theta## is not necessarily zero? Sorry I am not getting it.
I did include the ##\theta## component (it is zero).

The position vector in polar coordinates does not have ##r## and ##\theta## as its components. It only has a radial component with value ##r##. Whatever point you pick, its position vector is fully in the radial direction.
 
If it makes you feel better we can always write
$$
X^x = X^r \frac{\partial x}{\partial r} +
\underbrace{X^\theta}_{= 0}\frac{\partial x}{\partial \theta}
= r \cos(\theta) = x
$$
 
  • #10
Silly me. I get it now. Thanks!
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
595