MHB How to Avoid Extraneous Solutions in Solving Complex Equations

Yankel
Messages
390
Reaction score
0
Hello all,

Please look at the following:

Solve the equation:

\[\left | z \right |i+2z=\sqrt{3}\]

where z is a complex number.

I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

\[3x^{2}-5y^{2}+8xiy=3\]

\[(1,0),(-1,0)\]

This is definitely wrong. Can you please tell me where my mistake it ?

Thank you !

The correct answer should be: \[\frac{\sqrt{3}}{2}-\frac{1}{2}i\]
 
Mathematics news on Phys.org
Yankel said:
I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

Hey Yankel,

You've squared the equation.
However, the left side was not squared correctly.
Note that $(a+b)^2 \ne a^2+b^2$.

Instead, there is no need to square at all.
We can rearrange the equation as:
\[2x + i \left(\sqrt{x^{2}+y^{2}}+2y\right)=\sqrt{3}\]
If follows directly that $x=\frac{\sqrt 3}2$, after which we can solve for the imaginary part to be zero.
 
Thank you ! Silly mistake (Doh)

Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?
 
Yankel said:
Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?

You would have squared to solve the imaginary part to be zero.
That introduces an extraneous solution.
Check just before squaring whether y is supposed to be positive or negative. Then we can tell after (or during) solving which one to discard.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top