How to Avoid Extraneous Solutions in Solving Complex Equations

Click For Summary
SUMMARY

The discussion focuses on solving the complex equation \(\left | z \right |i+2z=\sqrt{3}\) and identifies common mistakes in the process. The user initially squared the equation incorrectly, leading to extraneous solutions. The correct approach involves rearranging the equation to isolate the real and imaginary parts, resulting in the solution \(z=\frac{\sqrt{3}}{2}-\frac{1}{2}i\). Key insights include the importance of correctly handling complex numbers and avoiding unnecessary squaring, which can introduce invalid solutions.

PREREQUISITES
  • Understanding of complex numbers and their representation
  • Familiarity with algebraic manipulation of equations
  • Knowledge of how to isolate real and imaginary parts in complex equations
  • Awareness of extraneous solutions in mathematical equations
NEXT STEPS
  • Study the properties of complex numbers and their operations
  • Learn techniques for solving complex equations without introducing extraneous solutions
  • Explore methods for verifying solutions in complex analysis
  • Investigate the implications of squaring equations in algebra
USEFUL FOR

Mathematicians, students studying complex analysis, educators teaching algebra, and anyone interested in solving complex equations accurately.

Yankel
Messages
390
Reaction score
0
Hello all,

Please look at the following:

Solve the equation:

\[\left | z \right |i+2z=\sqrt{3}\]

where z is a complex number.

I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

\[3x^{2}-5y^{2}+8xiy=3\]

\[(1,0),(-1,0)\]

This is definitely wrong. Can you please tell me where my mistake it ?

Thank you !

The correct answer should be: \[\frac{\sqrt{3}}{2}-\frac{1}{2}i\]
 
Physics news on Phys.org
Yankel said:
I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

Hey Yankel,

You've squared the equation.
However, the left side was not squared correctly.
Note that $(a+b)^2 \ne a^2+b^2$.

Instead, there is no need to square at all.
We can rearrange the equation as:
\[2x + i \left(\sqrt{x^{2}+y^{2}}+2y\right)=\sqrt{3}\]
If follows directly that $x=\frac{\sqrt 3}2$, after which we can solve for the imaginary part to be zero.
 
Thank you ! Silly mistake (Doh)

Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?
 
Yankel said:
Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?

You would have squared to solve the imaginary part to be zero.
That introduces an extraneous solution.
Check just before squaring whether y is supposed to be positive or negative. Then we can tell after (or during) solving which one to discard.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
1
Views
1K