MHB How to Avoid Extraneous Solutions in Solving Complex Equations

AI Thread Summary
The discussion focuses on solving the complex equation |z|i + 2z = √3, where the original poster made an error by incorrectly squaring the equation, leading to extraneous solutions. A key point raised is that squaring can introduce solutions that do not satisfy the original equation, emphasizing the importance of checking conditions before squaring. The correct approach involves rearranging the equation to isolate the real and imaginary parts without squaring. The conversation highlights the need to validate potential solutions to avoid accepting extraneous results. Understanding these concepts is crucial for accurately solving complex equations.
Yankel
Messages
390
Reaction score
0
Hello all,

Please look at the following:

Solve the equation:

\[\left | z \right |i+2z=\sqrt{3}\]

where z is a complex number.

I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

\[3x^{2}-5y^{2}+8xiy=3\]

\[(1,0),(-1,0)\]

This is definitely wrong. Can you please tell me where my mistake it ?

Thank you !

The correct answer should be: \[\frac{\sqrt{3}}{2}-\frac{1}{2}i\]
 
Mathematics news on Phys.org
Yankel said:
I tried solving it, and did the following, which is for some reason wrong. I saw a correct solution. My question to you is why mine is not, i.e., where is my mistake ?

\[i\sqrt{x^{2}+y^{2}}+(2x+2iy)=\sqrt{3}\]

\[(x^{2}+y^{2})(-1)+(4x^{2}+8xiy-4y^{2})=3\]

Hey Yankel,

You've squared the equation.
However, the left side was not squared correctly.
Note that $(a+b)^2 \ne a^2+b^2$.

Instead, there is no need to square at all.
We can rearrange the equation as:
\[2x + i \left(\sqrt{x^{2}+y^{2}}+2y\right)=\sqrt{3}\]
If follows directly that $x=\frac{\sqrt 3}2$, after which we can solve for the imaginary part to be zero.
 
Thank you ! Silly mistake (Doh)

Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?
 
Yankel said:
Solving your way, I get two solutions (y=1/2 and y=-1/2). One is incorrect. How can I know to ignore it without checking if the equation is valid with each solution ?

You would have squared to solve the imaginary part to be zero.
That introduces an extraneous solution.
Check just before squaring whether y is supposed to be positive or negative. Then we can tell after (or during) solving which one to discard.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top