How to Calculate Comet Halley's Distance from the Sun Using Kepler's Laws

  • Thread starter Thread starter bcd201115
  • Start date Start date
  • Tags Tags
    Laws
Click For Summary
SUMMARY

To calculate Comet Halley's distance from the Sun using Kepler's Laws, it is essential to recognize that its perihelion distance is 0.570 AU, equivalent to approximately 85,500,000 kilometers. The orbital period of Comet Halley is 75.6 years. By applying Kepler's Third Law, which relates the square of the orbital period to the cube of the semi-major axis, one can determine the maximum distance the comet travels from the Sun before beginning its return journey.

PREREQUISITES
  • Understanding of Kepler's Laws of Planetary Motion
  • Familiarity with astronomical units (AU)
  • Basic knowledge of orbital mechanics
  • Ability to perform unit conversions in astronomy
NEXT STEPS
  • Study Kepler's Third Law in detail
  • Learn how to convert between astronomical units and kilometers
  • Explore the concept of perihelion and aphelion distances
  • Investigate the implications of orbital eccentricity on comet trajectories
USEFUL FOR

Astronomy students, astrophysicists, and anyone interested in celestial mechanics and the dynamics of cometary orbits will benefit from this discussion.

bcd201115
Messages
20
Reaction score
0

Homework Statement


Comet Halley approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 x 1011 m is the mean Earth-Sun distance.) How far from the Sun will Halley's comet travel before it starts its return journey.


Homework Equations


Can anyone help me with this?


The Attempt at a Solution


I've already figured that .57 AU = 8550 m
 
Physics news on Phys.org
bcd201115 said:

Homework Statement


Comet Halley approaches the Sun to within 0.570 AU, and its orbital period is 75.6 yr. (AU is the symbol for astronomical unit, where 1 AU = 1.50 x 1011 m is the mean Earth-Sun distance.) How far from the Sun will Halley's comet travel before it starts its return journey.


Homework Equations


Can anyone help me with this?


The Attempt at a Solution


I've already figured that .57 AU = 8550 m

Your value for rp, the perihelion distance, looks a tad small. Did you lose a few orders of magnitude somewhere? :smile:

If you choose an appropriate unit system you shouldn't have to do any conversions :wink:

Which of Kepler's laws do you think might be applicable here, given the values that you know.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 29 ·
Replies
29
Views
9K
  • · Replies 3 ·
Replies
3
Views
6K