How to calculate differential work done by a force in circular motion?

AI Thread Summary
To calculate the differential work done by a force in circular motion, the correct expression for the differential displacement is d**r = d**θ × **r. The vector d**θ, which is defined as **n dθ, points along the rotation axis, and θ increases according to the right-hand rule. The discussion highlights the importance of the minus sign in the context of work done against the direction of force. Understanding these vector relationships is crucial for accurately determining work in circular motion scenarios. Proper application of these principles ensures correct calculations in physics problems involving circular dynamics.
zenterix
Messages
774
Reaction score
84
Homework Statement
When dealing with differential vectors, I still struggle sometimes.

I'd like to calculate the differential of work done by a force acting on a particle mass undergoing circular motion
Relevant Equations
Let ##\vec{r}## be the vector from the center of the circular motion to the particle.

I believe I can write the equation below, but I am not sure if it is an equality or an approximation.

$$d\vec{r}=\vec{r} \times d\vec{\theta}$$

$$dW=\vec{F} \cdot d\vec{r}$$
$$=\vec{F} \cdot (\vec{r} \times d\vec{\theta})$$

$$=(\vec{F} \times \vec{r})\cdot d\vec{\theta}$$

$$=-(\vec{r} \times \vec{F})\cdot d\vec{\theta}$$

$$\implies dW=-\vec{\tau} \cdot d\vec{\theta}$$
My question is, is this correct, and if so, why the minus sign?
 
Physics news on Phys.org
The only mistake is in the first line, which should be ##d\boldsymbol{r} = d\boldsymbol{\theta} \times \boldsymbol{r}##. The vector ##d\boldsymbol{\theta} = \hat{\boldsymbol{n}}d\theta## points along the rotation axis, and ##\theta## increases in the direction given by the right hand rule.
 
  • Like
Likes zenterix and TSny
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top