How to calculate Earth speed of the Moon induced orbit?

AI Thread Summary
The discussion centers on calculating the Earth's speed due to its gravitational interaction with the Moon, specifically its orbital speed around the Earth-Moon barycenter. Participants clarify the meaning of "induced orbit" and emphasize the need for more detailed calculations and inputs. Newton's laws are referenced, but there are misconceptions about the formulas used, particularly regarding momentum and force relationships. The conversation suggests exploring centrifugal force, centripetal acceleration, and the system's center of mass for a more accurate approach. Overall, the thread highlights the complexities involved in orbital mechanics calculations.
emily-
Messages
15
Reaction score
2
Homework Statement
How to calculate earth speed of the moon induced orbit?
Relevant Equations
I thought of using F = ma along with momentum p =mv to get the v for earth
It didn't work and I don't know how to do it.
 
Physics news on Phys.org
Sorry, what is an 'induced' orbit? A quick google search didn't give me any results for that term.
 
emily- said:
Homework Statement:: How to calculate earth speed of the moon induced orbit?
Relevant Equations:: I thought of using F = ma along with momentum p =mv to get the v for earth

It didn't work and I don't know how to do it.
Can you clarify the question? Are you trying to calculate the speed of the moon in its orbit about the Earth? Or the Earth in its orbit about the Earth-moon barycenter? The speed of the Earth's tidal bulge as it "orbits" the Earth's surface?

What inputs do you have to play with?

Since the only work you have shown is a pair of equations that "didn't work", I'll leave it there. We need you to show more work than that.
 
Drakkith said:
Sorry, what is an 'induced' orbit? A quick google search didn't give me any results for that term.
jbriggs444 said:
Can you clarify the question? Are you trying to calculate the speed of the moon in its orbit about the Earth? Or the Earth in its orbit about the Earth-moon barycenter? The speed of the Earth's tidal bulge as it "orbits" the Earth's surface?

What inputs do you have to play with?

Since the only work you have shown is a pair of equations that "didn't work", I'll leave it there. We need you to show more work than that.
I am thinking about the speed that earth has to have due to its gravitational interaction with the moon. I know that the moon's orbital velocity is approximately 1.022 km/s
Now according to Newton's third law, the force is equal for both of the bodies meaning that F = m_earth * a_earth = m_moon * a_moon
m_earth, m_moon and a_moon are known. By replacing the variables with values we get the value for a_earth. Now according to this formula F * dt = p = mv: a_earth * m_earth * dt = m_earth * v_earth which mean that
v_earth = a_earth * dt
 
emily- said:
I am thinking about the speed that earth has to have due to its gravitational interaction with the moon. I know that the moon's orbital velocity is approximately 1.022 km/s
OK. So it is the Earth's orbital speed about the Earth-moon barycenter that you are hoping to calculate.

emily- said:
Now according to Newton's third law, the force is equal for both of the bodies meaning that F = m_earth * a_earth = m_moon * a_moon
m_earth, m_moon and a_moon are known. By replacing the variables with values we get the value for a_earth.
Yes indeed. If we knew ##a_\text{moon}## we could solve for ##a_\text{earth}##. Though we do have the pesky problem of finding ##a_\text{moon}## if we attack the problem that way.

emily- said:
Now according to this formula F * dt = p = mv:
That is not a correct formula. ##F\ dt = dp##. Force is the rate of transfer of momentum. But that rate is an incremental change, not a final total. It is not equal to ##p## and hence, is not equal to ##mv##.

You'd need to integrate ##F \sin \theta\ dt## over one quarter cycle to get one component of the momentum. Not that bad as integrals go. But there are easier approaches. [Exercise for you: Justify the calculation of momentum using that integral]

You may want to think about formulas for centrifugal force or centripetal acceleration. Or about the location of the center of mass of the system.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top