MHB How to Calculate Matrix Norm in a Banach Space?

Click For Summary
To calculate the matrix norm of A in a Banach space, one can use the operator norm defined by the supremum of the norm of Az for unit vectors. The norm can be maximized by rewriting the expression for Az and applying constraints, such as \(x^2 + y^2 = 1\). The discussion highlights different approaches, including using software or the C*-identity to relate the norm to the largest eigenvalue of \(A^*A\). The eigenvalue can be found by solving the determinant equation of \(A^*A - \lambda I\). Ultimately, the norm is determined by taking the square root of this largest eigenvalue.
kalish1
Messages
79
Reaction score
0
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange
 
Physics news on Phys.org
If you want to calculate 2-norm,

(a) easy way I: use software such as Matlab;)

(b) easy way II: use $$\sqrt{\text{sup}(\lambda)}$$, where $$\lambda$$ is eigenvalue of $$A^TA$$.

(c) hard way: Let $$z=[x\text{ }y]^T$$ be unit vector. You need to maximize $$\parallel Az\parallel_2^2=z^TA^TAz$$, subject to $$\parallel z\parallel_2^2=z^Tz=1$$. By Lagrange multiplier method, it is to solve equations $$\bigtriangledown_z (z^TA^TAz-\lambda (z^Tz-1))=0$$ and $$z^Tz=1$$ (actually, it's not a typical optimization problem, but we can still do it like this, why?). At last, we have $$A^TAz=\lambda z$$. $$\lambda$$ is what easy way II speaks of.
 
Last edited:
kalish said:
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange

Since you are taking the sup of non-negative numbers, we may as well maximise $(5x-2y)^2+(x-y)^2$ subject to $x^2+y^2=1$ and then take square root at the end. The condition implies $x=cos{\alpha}$ and $y=sin{\alpha}$ for some ${\alpha}$. Rewriting $(5x-2y)^2+(x-y)^2$ using that, its obvious that the max occurs when $cos{\alpha}$ is positive and $sin{\alpha}=-cos{\alpha}$. So $(5x-2y)^2+(x-y)^2=6.27$ to 3.s.f. Square rooting gives the norm as approximately 2.5.
 
kalish said:
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange
There are many different norms for a matrix considered as an operator on a Banach space. If you want the operator norm of $A$ as an operator on 2-dimensional Euclidean space then the easiest way to calculate it is by using the C*-identity $\|A\|^2 = \|A^*A\|$, where $A^*$ is the Hermitian adjoint of $A$. In this case, $A^*A = \begin{bmatrix}5&1 \\-2&-1 \end{bmatrix} \begin{bmatrix}5&-2 \\1&-1 \end{bmatrix} = \begin{bmatrix}26&-11 \\-11&5 \end{bmatrix}.$ Since $A^*A$ is a positive matrix, its norm will be its largest eigenvalue, which you can find in the usual way by solving the quadratic equation $\det(A^*A - \lambda I) = 0.$ Then take the square root to get $\|A\|.$

Edit. I hadn't noticed that stainburg already suggested this method.
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
586
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K