How to Calculate Matrix Norm in a Banach Space?

Click For Summary

Discussion Overview

The discussion revolves around calculating the matrix norm of a given matrix in a Banach space. Participants explore various methods and approaches for determining the norm, considering different types of norms and mathematical techniques.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant proposes using the definition of the matrix norm as $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$ and seeks clarification on how to maximize this expression.
  • Another participant suggests calculating the 2-norm using software like Matlab or by finding the square root of the largest eigenvalue of $$A^TA$$.
  • A different approach is presented involving the Lagrange multiplier method to maximize $$\parallel Az\parallel_2^2$$ under the constraint $$\parallel z\parallel_2^2=1$$.
  • One participant emphasizes that there are multiple norms for matrices in Banach spaces and discusses using the C*-identity to relate the norm of $$A$$ to the norm of $$A^*A$$.
  • There is a suggestion to maximize the squared expression $$\max((5x-2y)^2+(x-y)^2)$$ under the constraint $$x^2+y^2=1$$, leading to a numerical approximation of the norm.

Areas of Agreement / Disagreement

Participants express differing views on the appropriate method to calculate the matrix norm, with no consensus reached on a single approach. Multiple competing methods and interpretations of the problem are presented.

Contextual Notes

The discussion highlights the lack of specification regarding the type of norm to be used, which influences the proposed methods. Participants also note the dependence on various mathematical techniques and assumptions, such as the choice of norm and the constraints applied.

kalish1
Messages
79
Reaction score
0
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange
 
Physics news on Phys.org
If you want to calculate 2-norm,

(a) easy way I: use software such as Matlab;)

(b) easy way II: use $$\sqrt{\text{sup}(\lambda)}$$, where $$\lambda$$ is eigenvalue of $$A^TA$$.

(c) hard way: Let $$z=[x\text{ }y]^T$$ be unit vector. You need to maximize $$\parallel Az\parallel_2^2=z^TA^TAz$$, subject to $$\parallel z\parallel_2^2=z^Tz=1$$. By Lagrange multiplier method, it is to solve equations $$\bigtriangledown_z (z^TA^TAz-\lambda (z^Tz-1))=0$$ and $$z^Tz=1$$ (actually, it's not a typical optimization problem, but we can still do it like this, why?). At last, we have $$A^TAz=\lambda z$$. $$\lambda$$ is what easy way II speaks of.
 
Last edited:
kalish said:
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange

Since you are taking the sup of non-negative numbers, we may as well maximise $(5x-2y)^2+(x-y)^2$ subject to $x^2+y^2=1$ and then take square root at the end. The condition implies $x=cos{\alpha}$ and $y=sin{\alpha}$ for some ${\alpha}$. Rewriting $(5x-2y)^2+(x-y)^2$ using that, its obvious that the max occurs when $cos{\alpha}$ is positive and $sin{\alpha}=-cos{\alpha}$. So $(5x-2y)^2+(x-y)^2=6.27$ to 3.s.f. Square rooting gives the norm as approximately 2.5.
 
kalish said:
How can I calculate the following matrix norm in a Banach Space:

$$
A=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix}
?$$

I have tried $$\|A\|=\sup\limits_{\|x\|=1}\|Az\|$$

and then did $$Az=\begin{pmatrix}
5 & -2 \\
1 & -1 \\
\end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x-2y \\ x-y \end{pmatrix}.$$

Now, how can I maximize the function $\|Az\|$? I'm not sure.

The norm is not specified in the problem. Should I just go with the square root of the sum of the squares of the compoments of Az, i.e. maximize $\sqrt{(5x-2y)^2+(x-y)^2}$ given the constraint $x^2+y^2=1$? Or should I maximize $\{{(5x-2y)^p+(x-y)^p}\}^{1/p}$ given the constraint $x^2+y^2=1$?

Any help would be appreciated.

I have crossposted this question here: calculus - Matrix norm in Banach space - Mathematics Stack Exchange
There are many different norms for a matrix considered as an operator on a Banach space. If you want the operator norm of $A$ as an operator on 2-dimensional Euclidean space then the easiest way to calculate it is by using the C*-identity $\|A\|^2 = \|A^*A\|$, where $A^*$ is the Hermitian adjoint of $A$. In this case, $A^*A = \begin{bmatrix}5&1 \\-2&-1 \end{bmatrix} \begin{bmatrix}5&-2 \\1&-1 \end{bmatrix} = \begin{bmatrix}26&-11 \\-11&5 \end{bmatrix}.$ Since $A^*A$ is a positive matrix, its norm will be its largest eigenvalue, which you can find in the usual way by solving the quadratic equation $\det(A^*A - \lambda I) = 0.$ Then take the square root to get $\|A\|.$

Edit. I hadn't noticed that stainburg already suggested this method.
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
2
Views
1K