- #1
boo
- 26
- 8
- TL;DR Summary
- Modal matrix
Mentor note: The Tex shown below had to be modified a fair amount to conform to the MathJax on this site.
Trying to calculate the modal matrix for the following
##A =\begin{pmatrix}
1 && 1/2 && 1/2 \\
0 && 1/2 && -1/2 \\
0 && 1/2 && 1 .5
\end{pmatrix}##
there are two eigenvectors for this matrix
##A =\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}##
and
##A =\begin{pmatrix}
0 \\
-1 \\
1
\end{pmatrix}##
using the traditional formula for the generalized eigenvector does not work
##Av2 = \lambda v2 + v1##
and, yet, MATLAB has no problem calculating them as\\
##A =\begin{pmatrix}
1/2 \\
-1/2 \\
1/2
\end{pmatrix}##
##A =\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
##
##A =\begin{pmatrix}
0 \\
-1 \\
1
\end{pmatrix}
##
Trying to calculate the modal matrix for the following
##A =\begin{pmatrix}
1 && 1/2 && 1/2 \\
0 && 1/2 && -1/2 \\
0 && 1/2 && 1 .5
\end{pmatrix}##
there are two eigenvectors for this matrix
##A =\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}##
and
##A =\begin{pmatrix}
0 \\
-1 \\
1
\end{pmatrix}##
using the traditional formula for the generalized eigenvector does not work
##Av2 = \lambda v2 + v1##
and, yet, MATLAB has no problem calculating them as\\
##A =\begin{pmatrix}
1/2 \\
-1/2 \\
1/2
\end{pmatrix}##
##A =\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}
##
##A =\begin{pmatrix}
0 \\
-1 \\
1
\end{pmatrix}
##
Last edited by a moderator: