Let me rewrite the total disturbance in terms of sine functions
$$
U(\mathbf{r}_o) = A_1\frac{\sin(k|\mathbf{r}_1-\mathbf{r}_o|)}{|\mathbf{r}_1-\mathbf{r}_o|} + A_2\frac{\sin(k|\mathbf{r}_2-\mathbf{r}_o|)}{|\mathbf{r}_2-\mathbf{r}_o|}
$$
Spherical or circular waves are a bit different from purely sinusoidal waves. When you said sinusoidal I imagine what you are picturing in your mind is a sinusoidal disturbance in two dimensions. Taking an example of string vibration, you only need two dimension, x and y, to draw it. A different method of drawing is to be expected when, instead, you want to draw circular wave, like ripple on a water surface. You need three dimensions to visualize such disturbance because the wave spreads in a plane (make it the xy plane), and the disturbance occurs in a direction perpendicular to the water surface (make it the z direction). One more dimension will be needed to draw spherical wave in space.
Furthermore, you cannot apply a direct analogy in 1D sinusoidal wave into spherical/circular wave, because 1D wave assumes that the wave disturbance is homogenous everywhere and thus you don't need to specify the position of the source. For circular/spherical waves, the fact that the wave spread radially means that the relative position of the source and observer matters.By definition, waves are periodic disturbances. Therefore one can always identify the crest and through, see the equation above, there are sine terms which obviously have crests and throughs. The way to superimpose them is by calculating that equation above. Unlike 1D waves, it's indeed impossible to find the closed form of the resultant disturbance for circular/spherical waves.