• Support PF! Buy your school textbooks, materials and every day products Here!

How to calculate the potential energy of a spring?

  • #1
Hi
I want to calculate the potential energy of the following figure in function of x

upload_2016-4-25_18-49-26.png


Here is my attempt :

mgx + 1/2*k*(sqrt(x^2+L^2)-L)=1/2*m*v^2

Is that correct ?

thanks
 
Last edited by a moderator:

Answers and Replies

  • #2
13
1
I really suck at physics, but I think that the forces exerted by the two springs should cancel each other out. So, the only thing which comes into play is gravitational potential energy. Someone please correct me if I'm wrong.

Edit: I think have taken only the mass m into account.
 
  • #3
berkeman
Mentor
56,893
6,864
Hi
I want to calculate the potential energy of the following figure in function of x

View attachment 99738

Here is my attempt :

mgx + 1/2*k*(sqrt(x^2+L^2)-L)=1/2*m*v^2

Is that correct ?

thanks
Welcome to the PF.

Not quite right. Please do not deleted the Homework Help Template that you are provided when starting a schoolwork thread here. It helps to organize your thoughts, especially showing the Relevant Equations.

Your "equation" does not make sense in the context of the question you posed. The potential energy does not depend on velocity (why is that on the righthand side of the equation?)

Can you list the Relevant Equations for this problem? If you want to find the PE(x), you will add the gravitational PE to the PE of the stretching springs. Please draw a FBD of the mass in the middle, showing all of the forces on it.
I really suck at physics, but I think that the forces exerted by the two springs should cancel each other out. So, the only thing which comes into play is gravitational potential energy. Someone please correct me if I'm wrong.

Edit: I think have taken only the mass m into account.
No, you are incorrect.
 
  • #4
Welcome to the PF.

Not quite right. Please do not deleted the Homework Help Template that you are provided when starting a schoolwork thread here. It helps to organize your thoughts, especially showing the Relevant Equations.

Your "equation" does not make sense in the context of the question you posed. The potential energy does not depend on velocity (why is that on the righthand side of the equation?)

Can you list the Relevant Equations for this problem? If you want to find the PE(x), you will add the gravitational PE to the PE of the stretching springs. Please draw a FBD of the mass in the middle, showing all of the forces on it.

No, you are incorrect.
here is my draw :

upload_2016-4-25_21-41-21.png


Is it correct?
thanks
 
  • #5
berkeman
Mentor
56,893
6,864
Closer :smile:

You have the gravitational PE correct at mgx.

The PE from the stretched springs has to do with the force in the vertical direction, not in the directions of the springs. Take the vertical component of the spring force(s) to get the PE contribution from the stretched springs.
 
  • #6
Closer :smile:

You have the gravitational PE correct at mgx.

The PE from the stretched springs has to do with the force in the vertical direction, not in the directions of the springs. Take the vertical component of the spring force(s) to get the PE contribution from the stretched springs.
mgx = 1/2*k*(x/sin(a) - L)^2 + 1/2*k*(x/sin(a) - L)^2

upload_2016-4-25_22-1-33.png


Is it correct?
thanks
 
  • #7
berkeman
Mentor
56,893
6,864
mgx = 1/2*k*(x/sin(a) - L)^2 + 1/2*k*(x/sin(a) - L)^2

View attachment 99745

Is it correct?
thanks
Closer still, but you should be adding mgx to those spring terms. You want an equation for PE(x) = ____________________

I'm also not real clear why you are dividing by the sine of the angle a...
 
  • #8
Closer still, but you should be adding mgx to those spring terms. You want an equation for PE(x) = ____________________

I'm also not real clear why you are dividing by the sine of the angle a...
PE(x) = mgx -1/2*k*(x/sin(a) - L)^2 - 1/2*k*(x/sin(a) - L)^2
(x/sin(a) - L) means that the distance of the stretched spring ... So x/sin(a) is total new distance and L is old distance .. So the difference x/sin(a)-L is the distance of the stretched spring ..
upload_2016-4-25_22-42-49.png


thanks
 
  • #9
berkeman
Mentor
56,893
6,864
Ah, I get the distance thing now with the x/sin(a)-L. But that just gives you the PE from the force of the spring in the direction of the spring, not in the vertical direction. The horizontal forces of the two springs on the mass cancel out.
 
  • #10
Ah, I get the distance thing now with the x/sin(a)-L. But that just gives you the PE from the force of the spring in the direction of the spring, not in the vertical direction. The horizontal forces of the two springs on the mass cancel out.
I do not know how to do ?
 
  • #11
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,776
5,048
The PE from the stretched springs has to do with the force in the vertical direction, not in the directions of the springs. Take the vertical component of the spring force(s) to get the PE contribution from the stretched springs.
No, energy is a scalar. The PE in the springs relates to their extensions. It does not have components.
 
  • #12
No, energy is a scalar. The PE in the springs relates to their extensions. It does not have components.
Do you have any idea how to build the equation of the potential energy for the system
thanks
 
  • #13
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,776
5,048
PE(x) = mgx -1/2*k*(x/sin(a) - L)^2 - 1/2*k*(x/sin(a) - L)^2
Nearly right, but in my experience stretching a spring increases its potential energy.
 
  • #14
Nearly right, but in my experience stretching a spring increases its potential energy.
Can you correct my formula ?
thanks
 
  • #15
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,776
5,048
Can you correct my formula ?
thanks
I can, but you are going to. The equation you wrote would have the springs' contribution to the total PE decreasing when the springs are stretched. What do you think must be wrong?
 
  • #16
I can, but you are going to. The equation you wrote would have the springs' contribution to the total PE decreasing when the springs are stretched. What do you think must be wrong?
is it the signs ?
PE(x) = mgx +1/2*k*(x/sin(a) - L)^2 + 1/2*k*(x/sin(a) - L)^2
 
  • #17
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,776
5,048
is it the signs ?
PE(x) = mgx +1/2*k*(x/sin(a) - L)^2 + 1/2*k*(x/sin(a) - L)^2
Yes.
 
  • #18
  • #19
  • #20
SammyS
Staff Emeritus
Science Advisor
Homework Helper
Gold Member
11,259
975
  • #21
It strikes me that from that figure, the block may be moving on a horizontal surface.
Is that the force of the block in function of x is : F(x) = k*(x/sin(a) - L) + k*(x/sin(a) - L)
and the kinetic energy in function of x is : KE(x)= 1/2*m*v^2 + 1/2*m*v^2 (I cannot express it in x)
Is that correct ?
thanks
 
  • #22
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
32,776
5,048
Is that the force of the block in function of x is : F(x) = k*(x/sin(a) - L) + k*(x/sin(a) - L)
and the kinetic energy in function of x is : KE(x)= 1/2*m*v^2 + 1/2*m*v^2 (I cannot express it in x)
Is that correct ?
thanks
Why the two 1\2 mv2 terms?
You probably need to express it in terms of dx/dt.
 
  • #23
Why the two 1\2 mv2 terms?
You probably need to express it in terms of dx/dt.
So you mean that this F(x) = k*(x/sin(a) - L) + k*(x/sin(a) - L) is correct !!
and KE(x)= 1/2*m*v^2 + 1/2*m*v^2 = KE(x)= 1/2*m*(dx/dt)^2 + 1/2*m*(dx/dt)^2
Is it like that?
thank you very much
 
  • #24
416
51
Why didn't you use vectors if you want the net force on the object?

I think he means, Why do you have two 0.5 m v^2? What does the second one represent?

I guess I know what the mentor meant by getting its components.. Because the vertical is doing positive work and the horizontal should have a work of 0 J because it doesn't move horizontally( Springs forces cancel each other if they have the same spring constant).

So If you use the vertical component but you have a variable that changes over time which is theta but both ways should yield in the same result right?
 
Last edited:
  • #25
Why didn't you use vectors if you want the net force on the object?

I think he means, Why do you have two 0.5 m v^2? What does the second one represent?
We have two springs so the kinetic energy should be double as much ,, is not that?
thanks
 
Top