- #1
kq6up
- 368
- 13
Homework Statement
Calculate $$\frac { d\langle { p }\rangle }{dt}=\left< -\frac { \partial V }{ \partial x } \right> $$
Homework Equations
$$\hat{H}\Psi=i\hbar\frac{\partial \Psi}{\partial t}$$ and $$\langle { p }\rangle=-i\hbar\int _{ -\infty }^{ \infty }{ { \Psi }^{ * } } \frac { \partial }{ \partial x } \Psi dx$$
The Attempt at a Solution
By the product rule $$\frac{\langle { p }\rangle}{dt} =-i\hbar\int _{ -\infty }^{ \infty }{ { \frac { \partial \Psi ^{ * } }{ \partial t } }\frac { \partial \Psi }{ \partial x } +\Psi ^{ * }\frac { \partial }{ \partial t } } \frac { \partial }{ \partial x } \Psi dx$$
The partial derivatives are commutative, so $$\frac { \partial }{ \partial t } \frac { \partial }{ \partial x } \Psi=\frac { \partial }{ \partial x } \frac { \partial }{ \partial t } \Psi$$ Alrighty, so now we can subsitute
$$\frac { \partial \Psi }{ \partial t }$$ for $$\frac{\hat{H}\Psi}{i\hbar}$$. This yields:
$$\frac{\langle { p }\rangle}{dt}=-\int _{ -\infty }^{ \infty }{ { \frac { \partial \Psi ^{ * } }{ \partial x } }\hat { H } \Psi +\Psi ^{ * }\frac { \partial }{ \partial x } } \hat { H } \Psi dx$$
Subbing in the hamiltonian turns this into a total mess, as does integration by parts. I quickly glanced at the solution, and it didn't look so messy, so I am not sure if I made a mistake or went down a rabbit hole.
If you see any errors, let me know.
Thanks,
Chris Maness