Are you taking an "Abstract Algebra". If so you should know what "isomorphic" means- that there is a function from one group to the other, f: G->H, that
1) it is "one-to-one"- if f(x)= f(y) the x= y.
2) it is "onto"- for every y in H there exist x in G such that f(x)= y.
3) it "preserves the operation"- f(x+ y)= f(x)+f(y).
G is defined as multiples of 2 and H is defined as multiples of 3. What about f(2n)= 3n?
Are there known conditions under which a Markov Chain is also a Martingale? I know only that the only Random Walk that is a Martingale is the symmetric one, i.e., p= 1-p =1/2.
Hello !
I derived equations of stress tensor 2D transformation.
Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture.
I want to obtain expression that connects tensor for case 1 and tensor for case 2.
My attempt:
Are these equations correct? Is there more easier expression for stress tensor...