High School How to compare two huge numbers with nested exponentials?

  • Thread starter Thread starter xopek
  • Start date Start date
  • Tags Tags
    Compare Numbers
Click For Summary
Comparing two large numbers represented as nested exponentials, such as a^b^c^d and w^x^y^z, poses challenges due to their immense size. Logarithmic transformations can simplify comparisons, but applying logarithms to nested powers can lead to complications. While log(a^b^c) can be expressed as b^c log a, further simplifications may not yield manageable results if b^c remains large. Attempts to derive a general approach for reducing nested exponentials through consecutive logarithmic applications have shown limited success. Ultimately, the discussion highlights the complexity of comparing such numbers without direct computation.
xopek
Messages
24
Reaction score
0
Let's say we have two numbers represented as a "tower" of exponentials, a^b^c^d and w^x^y^z (powers calculated right to left) and we want to compare them, not necessarily calculating their values. Their values are so huge, they can't be represented on a computer or calculator. Is it possible to use logarithms to compare them? I know that it is possible for a simple case, say, a^b and x^y. We can apply log to both sides and then compare b log a and y log x. But what about nested powers? We can represent log(a^b^c) as b^c log a. But what if b^c is still huge. Can we continue and end up with something like c* log(b) * log(a)? A quick test shows that this is probably not going to work. Any ideas? Thanks
 
Mathematics news on Phys.org
xopek said:
...We can represent log(a^b^c) as b^c log a. But what if b^c is still huge. Can we continue and end up with something like c* log(b) * log(a)? A quick test shows that this is probably not going to work. Any ideas? Thanks
log(bc⋅log(a)) = c⋅log(b)+log(log(a)) , not what you have.
 
SammyS said:
log(bc⋅log(a)) = c⋅log(b)+log(log(a)) , not what you have.
Ah, right, thank you. So do you think the general approach is otherwise correct?

Let's say in c⋅log(b)+log(log(a)) c is not just c but to the power of d. I am not sure, would I need to apply log to the sum? In other words, is there a general approach to get rid of all the nested exponentials by applying log consecutively? I am not sure what to do here:
log( cd⋅log(b)+log(log(a)))
 
Last edited:
xopek said:
Ah, right, thank you. So do you think the general approach is otherwise correct?

Let's say in c⋅log(b)+log(log(a)) c is not just c but to the power of d. I am not sure, would I need to apply log to the sum? In other words, is there a general approach to get rid of all the nested exponentials by applying log consecutively? I am not sure what to do here:
log( cd⋅log(b)+log(log(a)))
Once you have that sum, taking the log doesn't help.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 96 ·
4
Replies
96
Views
12K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K