How to Compute Standard Deviation in a Mixed Sampling Problem

Click For Summary
SUMMARY

The discussion focuses on computing the expected value and standard deviation of silver candy wrappers from two different holiday distributions. The expected value is calculated as 32 using the formula $E[X] = np$, where $n$ is the number of trials and $p$ is the probability of success. The standard deviation is derived from the sum of two independent binomial distributions, applying the variance formula $Var(X) = np(1-p)$ for each distribution. The final standard deviation is computed by summing the variances of both distributions and taking the square root.

PREREQUISITES
  • Understanding of binomial distributions and their properties
  • Familiarity with the concepts of expected value and variance
  • Knowledge of discrete random variables
  • Ability to perform basic statistical calculations
NEXT STEPS
  • Learn about the properties of binomial distributions in detail
  • Study the Central Limit Theorem and its implications for sampling distributions
  • Explore the concept of correlation in statistics and its effect on combined distributions
  • Practice calculating expected values and standard deviations for various probability distributions
USEFUL FOR

Students studying statistics, educators teaching probability concepts, and anyone interested in understanding the application of binomial distributions in real-world scenarios.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
This is problem AP3.7 on page 669 of The Practice of Statistics, 5th AP Ed., by Starnes, Tabor, Yates, and Moore.

A certain candy has different wrappers for various holidays. During Holiday 1, the candy wrappers are 30% silver, 30% red, and 40% pink. During Holiday 2, the wrappers are 50% silver and 50% blue. Forty pieces of candy are randomly selected from the Holiday 1 distribution, and 40 pieces are randomly selected from the Holiday 2 distribution. What are the expected value and standard deviation of the total number of silver wrappers?

Now, I've computed the expected value of silver candies as $40(0.3)+40(0.5)=32$. But I am at a loss to compute the standard deviation. My instinct tells me this is a discrete random variable, in which case I should compute
$$\sigma=\sqrt{\sum_i(x_i-\overline{x})^2 p_i}.$$
But then what are the $x_i$ and $p_i$ values?
 
Physics news on Phys.org
I would think of this as a binomial random variable, since we essentially have two outcomes and are considering each draw to be independent of the rest. For Holiday 1, each draw has a 30% "success" rate, thus a 70% "failure" rate. Same idea for Holiday 2. You found the expected value correctly using the formula for a binomial distribution $E[X]=np$. I think you can continue in this way by using the formula for the variance of a binomial random variable: $np(1-p)$. Also, since Holiday 1 and Holiday 2 are assumed to be independent, we can simply add their variances together to get the combined variance, then find the standard deviation.
 
Hi Ackbach,

The random variable $X$ is the number of silver wrappers.
The possible outcomes are $x_1=0$ up to $x_{81}=80$ silver wrappers with a population size of $n=81$.
The $p_i$ are the corresponding probabilities and for instance $p_{81} = P(80 \text{ silver wrappers}) = 0.3^{40} \cdot 0.5^{40}$.

Since this is about a population instead of a sample the proper symbol for the mean is $\mu$ instead of $\bar x$.
$$\sigma = \sqrt{\sum(x_i - \mu)^2 p_i}$$

As Jameson said, this is the sum of 2 binomial distributions.

When summing distributions, we have:
\begin{cases}
\mu_{_{Y+Z}} &= \mu_{_Y} + \mu_{_Z} \\
\sigma_{_{Y+Z}}^2 &=\sigma_{_Y}^2 + \sigma_{_Z}^2 + 2\sigma_{_Y}\sigma_{_Z}\rho_{_{YZ}}
\end{cases}where $\rho_{_{YZ}}$ is the correlation between $Y$ and $Z$.
 
Thanks very much for your replies, Jameson and I like Serena. They cleared things up immensely in my mind! I was able to obtain the correct answer.

Cheers.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K