• Support PF! Buy your school textbooks, materials and every day products via PF Here!

How to compute the surface an N-sphere using delta functions

Problem Statement
I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations
various delta function representations
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
 
∫dJδ(J2-N)≈exp(N/2(1+ln2π))

The area of an N-sphere goes like 2πN/2 so I know this is close but Im haven't remembered the trick yet how to get the exact result
 

haruspex

Science Advisor
Homework Helper
Insights Author
Gold Member
2018 Award
31,238
4,558
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
Is this what you are after?
 
No I was thinking more to use a relation like

$$\delta[g(x)]=\dfrac{\delta(x-x_{0})}{|g'(x)|_{x=x_{0}}}$$

or maybe the simpler relation

$$\delta[(x^{2}-a^{2})]=\dfrac{1}{2|a|}[\delta(x+a)+\delta(x-a)]$$

so that we can reduce

$$\delta[(\mathbf{J}^{2}-N)]=\dfrac{1}{2N^{1/2}}[\delta(\mathbf{J}+\sqrt{N})+\delta(\mathbf{J}-\sqrt{N})]$$

Which should give 2 identical values when integrated over ##\int\;d\mathbf{J}##. Then we need to represent ##\int\;d\mathbf{J}## using

$$d\mathbf{J}=\Pi_{i=1}^{N}dj_{i}$$

and then compute the integral as a product of N identical integrals over ##dj_{i}##

OR

I suppose one could try to do the ##\int\;d\mathbf{J}## integral in N-dim spherical coordinates, and then the relation (above on wikipedia) might be useful

EVENTUALLY

I want to add some constraints on the ##\mathbf{J}## vectors, such as specifying an arbitrary vector ##\mathbf{K}##, and asking what is

$$\int\;d\mathbf{J}\delta(\mathbf{J}^{2}-N)\delta(\dfrac{1}{N}\mathbf{J}^{T}\mathbf{K}-E)=?$$

So I would like to work it all out, in gross detail, using the delta function forms
 
Last edited:

Want to reply to this thread?

"How to compute the surface an N-sphere using delta functions" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top