How to compute the surface an N-sphere using delta functions

Click For Summary

Homework Help Overview

The discussion revolves around computing the surface area of an N-sphere, particularly for large values of N, using delta functions. Participants are exploring various representations of delta functions and their implications for volume integrals in this context.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss different representations of delta functions and their application to integrals involving a vector J with a large norm. There is an exploration of how to compute the integral and the exact results expected.

Discussion Status

Some participants have offered specific delta function relations and approaches to simplify the integral calculations. There is an ongoing exploration of multiple methods, including the use of spherical coordinates and constraints on the vector J.

Contextual Notes

Participants are considering the implications of large N and the need for exact results, while also discussing the potential constraints on the vector J and its relationship to another vector K.

charlesmartin14
Messages
13
Reaction score
1
Homework Statement
I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations
various delta function representations
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
 
Physics news on Phys.org
∫dJδ(J2-N)≈exp(N/2(1+ln2π))

The area of an N-sphere goes like 2πN/2 so I know this is close but I am haven't remembered the trick yet how to get the exact result
 
charlesmartin14 said:
Problem Statement: I am trying to understand how to compute the surface an N-sphere , for large N, to leading order (and exactly)

Given a vector J with norm N, with N large, how does one compute the volume integral ? That is, what representation of the delta function. And what is the exact result ?
Relevant Equations: various delta function representations

.
Is this what you are after?
https://en.m.wikipedia.org/wiki/N-sphere#Recurrences
 
No I was thinking more to use a relation like

$$\delta[g(x)]=\dfrac{\delta(x-x_{0})}{|g'(x)|_{x=x_{0}}}$$

or maybe the simpler relation

$$\delta[(x^{2}-a^{2})]=\dfrac{1}{2|a|}[\delta(x+a)+\delta(x-a)]$$

so that we can reduce

$$\delta[(\mathbf{J}^{2}-N)]=\dfrac{1}{2N^{1/2}}[\delta(\mathbf{J}+\sqrt{N})+\delta(\mathbf{J}-\sqrt{N})]$$

Which should give 2 identical values when integrated over ##\int\;d\mathbf{J}##. Then we need to represent ##\int\;d\mathbf{J}## using

$$d\mathbf{J}=\Pi_{i=1}^{N}dj_{i}$$

and then compute the integral as a product of N identical integrals over ##dj_{i}##

OR

I suppose one could try to do the ##\int\;d\mathbf{J}## integral in N-dim spherical coordinates, and then the relation (above on wikipedia) might be useful

EVENTUALLY

I want to add some constraints on the ##\mathbf{J}## vectors, such as specifying an arbitrary vector ##\mathbf{K}##, and asking what is

$$\int\;d\mathbf{J}\delta(\mathbf{J}^{2}-N)\delta(\dfrac{1}{N}\mathbf{J}^{T}\mathbf{K}-E)=?$$

So I would like to work it all out, in gross detail, using the delta function forms
 
Last edited:

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K