MHB How to Convert Polar to Rectangular Coordinates in Calculus?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Polar Rectangular
Click For Summary
To convert polar coordinates to rectangular coordinates for the equation r = 3 - cos(θ), the relationship r² = x² + y² is essential. The equation can be manipulated to x² + y² = 3r - x, leading to x² + y² = 3√(x² + y²) - x. This results in the equation (x² + x + y²)² = 9(x² + y²), which can be complex to simplify. The discussion highlights the challenges in handling the conversion, emphasizing that intuition can sometimes guide correct answers. Overall, the conversion process can be intricate and requires careful algebraic manipulation.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$r=3-\cos\left({\theta}\right)$
${r}^{2}=3r-r\cos\left({\theta}\right)$
${x}^{2}+{y}^{2}=3r+x$
How you deal with 3r ?
 
Mathematics news on Phys.org
karush said:
$r=3-\cos\left({\theta}\right)$
${r}^{2}=3r-r\cos\left({\theta}\right)$
${x}^{2}+{y}^{2}=3r+x$
How you deal with 3r ?
You have a slight mistake: [math]x^2 + y^2 = 3r - x[/math]

As always [math]r = \sqrt{x^2 + y^2}[/math].

Continuing:
[math]x^2 + y^2 = 3 \sqrt{x^2 + y^2} - x[/math]

[math]x^2 + x + y^2 = 3 \sqrt{x^2 + y^2}[/math]

[math]\left ( x^2 + x + y^2 \right ) ^2 = 9(x^2 + y^2)[/math]

etc.

Yes, it's ugly.

-Dan
 
Last edited by a moderator:
Funny I had that answer and thot it was wrong, quess intuition is always right?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K