I have a function, [itex]x(t)[/itex], where [itex]x[/itex] and [itex]t[/itex] are real scalars. I have been trying to derive an analytical expression for the n(adsbygoogle = window.adsbygoogle || []).push({}); ^{th}derivative of [itex]x[/itex] with respect to [itex]t[/itex]:[tex]x^{(n)}(t) \triangleq \frac{d^n}{dt^n}x(t)= \ \ ?[/tex]However, getting a general expression is proving tricky.

Meanwhile, I have managed to derive a method for recursively obtaining the n^{th}derivative of [itex]t[/itex] with respect to [itex]x[/itex]:[tex]t^{(n)}(x) = f\{t^{(n-1)}(x), t^{(n-2)}(x), \dots\} = \ \ \mathrm{known}[/tex]

Is there any way I can use this information to my advantage?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# How to derive nth derivative of x(t), when nth derivative of t(x) is known?

**Physics Forums | Science Articles, Homework Help, Discussion**