MHB How to Determine the Vertex of a Parabola?

  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Parabola Vertex
Amer
Messages
259
Reaction score
0
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
 
Mathematics news on Phys.org
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.

The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$

$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
 
Last edited by a moderator:
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
In general, the axis of the parabola will be at an angle to the coordinate axes. I think that the easiest way to find the vertex is probably to find some new coordinates $(X,Y)$ so that the axis of the parabola is parallel to one of the new coordinate axes.

If the equation is $4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $, then you can write it as $(2x+y)^2 = 5x - 7y - 11$. Take one of the new coordinates to be $Y = 2x+y$. The other coordinate $X$ must be perpendicular to $Y$, so take it to be $X = x-2y$. Next, solve the equations to get the old coordinates $(x,y)$ in terms of the new ones. That gives $x = \frac15(X+2Y)$, $y = \frac15(Y-2X)$. Substitute those values into the parabola equation, getting $Y^2 = (X+2Y) - \frac75(Y-2X) + 11$.

At this stage, the arithmetic gets messy, so I won't try to get the numbers correct. But in principle you can rearrange that last equation to get it into the form $(Y-\alpha)^2 = \beta(X-\gamma)$ for some coefficients $\alpha$, $\beta$, $\gamma$. You should be able to recognise that as a parabola with vertex at $(X,Y) = (\gamma,\alpha)$. Now all that remains is to express that in terms of the old coordinates $(x,y)$.
 
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
Strictly speaking, it is also required that
\[
\begin{vmatrix}
A & B/2 & D/2\\
B/2 & C & E/2\\
D/2 & E/2 & F
\end{vmatrix}\ne0.
\]

mathmari said:
The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$
If $A=0$ or $C=0$ while $B\ne0$, then it is not a parabola since $B^2\ne4AC$.

mathmari said:
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
No, it's a parabola.

[GRAPH]7n1ibfij2l[/GRAPH]

The vertex of a parabola with equation $F(x,y)=0$ can be found as follows. First find the asymptotic direction $(\alpha,\beta)$ from the equation
\[
A\alpha^2+B\alpha\beta+C\beta^2=0
\]
(there are infinitely many nonzero solutions). Then the equation of the parabola axis is
\[
-\beta\frac{\partial F}{\partial x}+\alpha\frac{\partial F}{\partial y}=0\qquad(*)
\]
so the coordinates of the vertex can be found from (*) and $F(x,y)=0$.

In the case of
\[
4x^2 + 4xy + y^2 - 5x + 7y + 11 =0
\]
the asymptotic direction is $(1,-2)$, the axis is $20x+10y-3=0$ and the vertex is $x = \frac{1319}{1900}\approx 0.694$ and $y = -\frac{517}{475}\approx -1.088$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top