How to Determine the Vertex of a Parabola?

  • Context: MHB 
  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Parabola Vertex
Click For Summary
SUMMARY

The vertex of a parabola defined by the general equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ can be determined using specific transformations and calculations. For the example parabola $4x^2 + 4xy + y^2 - 5x + 7y + 11 = 0$, the vertex coordinates are approximately $(0.694, -1.088)$. The asymptotic direction is found to be $(1, -2)$, leading to the axis equation $20x + 10y - 3 = 0$. The conditions for the equation to represent a parabola include $B^2 = 4AC$ and the determinant condition for the coefficients.

PREREQUISITES
  • Understanding of conic sections, specifically parabolas
  • Familiarity with the general quadratic equation form
  • Knowledge of coordinate transformations
  • Basic calculus for finding derivatives and solving equations
NEXT STEPS
  • Study the derivation of the vertex formula for conic sections
  • Learn about coordinate transformations in analytic geometry
  • Explore the properties of conic sections, focusing on parabolas
  • Practice solving for vertices of various parabolic equations
USEFUL FOR

Mathematicians, physics students, and anyone involved in analytical geometry or conic sections will benefit from this discussion, particularly those focused on understanding the properties and applications of parabolas.

Amer
Messages
259
Reaction score
0
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
 
Mathematics news on Phys.org
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.

The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$

$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
 
Last edited by a moderator:
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
In general, the axis of the parabola will be at an angle to the coordinate axes. I think that the easiest way to find the vertex is probably to find some new coordinates $(X,Y)$ so that the axis of the parabola is parallel to one of the new coordinate axes.

If the equation is $4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $, then you can write it as $(2x+y)^2 = 5x - 7y - 11$. Take one of the new coordinates to be $Y = 2x+y$. The other coordinate $X$ must be perpendicular to $Y$, so take it to be $X = x-2y$. Next, solve the equations to get the old coordinates $(x,y)$ in terms of the new ones. That gives $x = \frac15(X+2Y)$, $y = \frac15(Y-2X)$. Substitute those values into the parabola equation, getting $Y^2 = (X+2Y) - \frac75(Y-2X) + 11$.

At this stage, the arithmetic gets messy, so I won't try to get the numbers correct. But in principle you can rearrange that last equation to get it into the form $(Y-\alpha)^2 = \beta(X-\gamma)$ for some coefficients $\alpha$, $\beta$, $\gamma$. You should be able to recognise that as a parabola with vertex at $(X,Y) = (\gamma,\alpha)$. Now all that remains is to express that in terms of the old coordinates $(x,y)$.
 
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
Strictly speaking, it is also required that
\[
\begin{vmatrix}
A & B/2 & D/2\\
B/2 & C & E/2\\
D/2 & E/2 & F
\end{vmatrix}\ne0.
\]

mathmari said:
The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$
If $A=0$ or $C=0$ while $B\ne0$, then it is not a parabola since $B^2\ne4AC$.

mathmari said:
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
No, it's a parabola.

[GRAPH]7n1ibfij2l[/GRAPH]

The vertex of a parabola with equation $F(x,y)=0$ can be found as follows. First find the asymptotic direction $(\alpha,\beta)$ from the equation
\[
A\alpha^2+B\alpha\beta+C\beta^2=0
\]
(there are infinitely many nonzero solutions). Then the equation of the parabola axis is
\[
-\beta\frac{\partial F}{\partial x}+\alpha\frac{\partial F}{\partial y}=0\qquad(*)
\]
so the coordinates of the vertex can be found from (*) and $F(x,y)=0$.

In the case of
\[
4x^2 + 4xy + y^2 - 5x + 7y + 11 =0
\]
the asymptotic direction is $(1,-2)$, the axis is $20x+10y-3=0$ and the vertex is $x = \frac{1319}{1900}\approx 0.694$ and $y = -\frac{517}{475}\approx -1.088$.
 

Similar threads

  • · Replies 44 ·
2
Replies
44
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
30K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
3K
Replies
12
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
1
Views
2K