How to Determine the Vertex of a Parabola?

  • Context: MHB 
  • Thread starter Thread starter Amer
  • Start date Start date
  • Tags Tags
    Parabola Vertex
Click For Summary

Discussion Overview

The discussion revolves around determining the vertex of a parabola given its general equation, specifically focusing on the equation $4x^2 + 4xy + y^2 - 5x + 7y + 11 = 0$. Participants explore various methods and considerations for identifying the vertex, including the conditions under which the equation represents a parabola versus other conic sections.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants assert that the general equation of a parabola is $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with the condition $B^2 = 4AC$.
  • Others argue that the equation $4x^2 + 4xy + y^2 - 5x + 7y + 11 = 0$ does not represent a parabola but rather an ellipse.
  • A participant suggests a method to find the vertex by transforming the coordinates to align the parabola's axis with the coordinate axes, proposing new coordinates $(X,Y)$.
  • Another participant provides a detailed approach to finding the vertex using asymptotic directions and the equation of the parabola axis, claiming to derive specific coordinates for the vertex.

Areas of Agreement / Disagreement

There is disagreement among participants regarding whether the given equation represents a parabola or an ellipse. Additionally, various methods for determining the vertex are proposed, with no consensus on the best approach.

Contextual Notes

Participants highlight the importance of certain conditions for the equation to represent a parabola, such as the determinant condition and the relationships between coefficients. The discussion also reflects the complexity of transforming the equation and the potential for errors in arithmetic during the process.

Amer
Messages
259
Reaction score
0
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
 
Mathematics news on Phys.org
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.

The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$

$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
 
Last edited by a moderator:
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
what is the coordinate of the vertex of the parabola or in other word how to determine the vertex of a given parabola for example
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $

Thanks.
In general, the axis of the parabola will be at an angle to the coordinate axes. I think that the easiest way to find the vertex is probably to find some new coordinates $(X,Y)$ so that the axis of the parabola is parallel to one of the new coordinate axes.

If the equation is $4x^2 + 4xy + y^2 - 5x + 7y + 11 =0 $, then you can write it as $(2x+y)^2 = 5x - 7y - 11$. Take one of the new coordinates to be $Y = 2x+y$. The other coordinate $X$ must be perpendicular to $Y$, so take it to be $X = x-2y$. Next, solve the equations to get the old coordinates $(x,y)$ in terms of the new ones. That gives $x = \frac15(X+2Y)$, $y = \frac15(Y-2X)$. Substitute those values into the parabola equation, getting $Y^2 = (X+2Y) - \frac75(Y-2X) + 11$.

At this stage, the arithmetic gets messy, so I won't try to get the numbers correct. But in principle you can rearrange that last equation to get it into the form $(Y-\alpha)^2 = \beta(X-\gamma)$ for some coefficients $\alpha$, $\beta$, $\gamma$. You should be able to recognise that as a parabola with vertex at $(X,Y) = (\gamma,\alpha)$. Now all that remains is to express that in terms of the old coordinates $(x,y)$.
 
Amer said:
The general equation of the parabola has the form
$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ with $B^2 = 4AC$
Strictly speaking, it is also required that
\[
\begin{vmatrix}
A & B/2 & D/2\\
B/2 & C & E/2\\
D/2 & E/2 & F
\end{vmatrix}\ne0.
\]

mathmari said:
The general equation of the parabola has the form
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A \neq 0, C=0$$
OR
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, \text{ with } A=0, C \neq 0$$
If $A=0$ or $C=0$ while $B\ne0$, then it is not a parabola since $B^2\ne4AC$.

mathmari said:
$4x^2 + 4xy + y^2 - 5x + 7y + 11 =0$ is an ellipse.
No, it's a parabola.

[GRAPH]7n1ibfij2l[/GRAPH]

The vertex of a parabola with equation $F(x,y)=0$ can be found as follows. First find the asymptotic direction $(\alpha,\beta)$ from the equation
\[
A\alpha^2+B\alpha\beta+C\beta^2=0
\]
(there are infinitely many nonzero solutions). Then the equation of the parabola axis is
\[
-\beta\frac{\partial F}{\partial x}+\alpha\frac{\partial F}{\partial y}=0\qquad(*)
\]
so the coordinates of the vertex can be found from (*) and $F(x,y)=0$.

In the case of
\[
4x^2 + 4xy + y^2 - 5x + 7y + 11 =0
\]
the asymptotic direction is $(1,-2)$, the axis is $20x+10y-3=0$ and the vertex is $x = \frac{1319}{1900}\approx 0.694$ and $y = -\frac{517}{475}\approx -1.088$.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
3K
Replies
12
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K