How to express velocity gradient in cylindrical coordinates?

Click For Summary
The discussion focuses on expressing the velocity gradient operator in cylindrical coordinates for the Vlasov equation. The participants explore the correct formulation of the operator, noting that the expression in velocity space does not directly translate to regular spatial coordinates. There is confusion regarding the dimensionality of the distribution function, which exists in a six-dimensional space combining position and velocity. The conversation also touches on how to evaluate the acceleration vector in the context of the Vlasov equation, emphasizing the relationship between forces and acceleration in plasma physics. The thread concludes with a need for clarification on the correct formulation of the gradient operator in this context.
Inquisitive Student
Messages
10
Reaction score
0

Homework Statement


The vlasov equation is (from !Introduction to Plasma Physics and Controlled Fusion! by Francis Chen):

$$\frac{d}{dt}f + \vec{v} \cdot \nabla f + \vec{a} \cdot \nabla_v f = 0$$

Where $$\nabla_v$$ is the del operator in velocity space. I've read that $$\nabla_v = \frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z}$$ which I think is the operator expressed in cylindrical coordinates in velocity space. I would like to express this operator in cylindrical coordinates in regular space (i.e. $$\hat{\rho},\hat{\theta},\hat{z}$$).

Homework Equations

(diagram)[/B]

537fc1493f5ed9.jpg

The Attempt at a Solution



$$v_r = \sqrt{(v_\rho)^2 + (v_\phi)^2} = v$$

$$\theta_v = \phi + \tan^{-1}(\frac{v_\phi}{v_\rho})$$

$$\frac{\partial}{\partial v_r} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial v_r} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial v_r} = \frac{v_r}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v_r}{v_\phi}\frac{\partial}{\partial v_\phi} = \frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}$$

$$\frac{\partial}{\partial \theta_v} = \frac{\partial}{\partial v_\rho}\frac{\partial v_\rho}{\partial \theta_v} + \frac{\partial}{\partial v_\phi}\frac{\partial v_\phi}{\partial \theta_v} = -\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}$$

$$\vec{v} = v*\hat{v_r} = v (cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi}) \rightarrow \hat{v_r} = cos(\theta_v - \phi) \hat{\rho} + sin(\theta_v - \phi) \hat{\phi} = \frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}$$

$$\hat{v_\theta}$$ is 90 degrees rotated from $$\hat{v_r}$$ thus:

$$\hat{v_\theta} = -sin(\theta_v - \phi) \hat{\rho} + cos(\theta_v - \phi) \hat{\phi} = -\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}$$

So:

$$\frac{\partial}{\partial v_r} \hat{v_r} = (\frac{v_\rho}{v}\hat{\rho} + \frac{v_\phi}{v} \hat{\phi}) * (\frac{v}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{v}{v_\phi}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} + \frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\phi})\hat{\rho} + (\frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

$$\frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} = \frac{1}{v}(-\frac{v_\phi}{v} \hat{\rho} + \frac{v_\rho}{v} \hat{\phi}) * (-\frac{v^2}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{v^2}{v_\rho}\frac{\partial}{\partial v_\phi}) = (\frac{\partial}{\partial v_\rho} - \frac{v_\phi}{v_\rho}\frac{\partial}{\partial v_\phi})\hat{\rho} + (-\frac{v_\rho}{v_\phi}\frac{\partial}{\partial v_\rho} + \frac{\partial}{\partial v_\phi})\hat{\phi}$$

Putting everything together:
$$\frac{\partial}{\partial v_r} \hat{v_r} + \frac{1}{v_r}\frac{\partial}{\partial \theta_v} \hat{v_\theta} + \frac{\partial}{\partial v_z} \hat{z} = (2\frac{\partial}{\partial v_\rho} + (\frac{v_\rho}{v_\phi} - \frac{v_\phi}{v_\rho})\frac{\partial}{\partial v_\phi})\hat{\rho} + (2\frac{\partial}{\partial v_\phi} + (\frac{v_\phi}{v_\rho} - \frac{v_\rho}{v_\phi})\frac{\partial}{\partial v_\rho})\hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$

However this does not look right.
Shouldn't $$\nabla_v = \frac{\partial}{\partial v_\rho} \hat{\rho} + \frac{\partial}{\partial v_\phi} \hat{\phi} + \frac{\partial}{\partial v_z} \hat{z}$$ ?

Have I made a mistake somewhere?
 

Attachments

  • 537fc1493f5ed9.jpg
    537fc1493f5ed9.jpg
    6.5 KB · Views: 2,033
Physics news on Phys.org
I don't think you can do what you are trying to do because ## f=f(\vec{r},\vec{v}, t) ##. The distribution function ## f ## is basically in a 6 dimensional space of ## \vec{r} ## and ## \vec{v} ##. ## \\ ## At each location ## \vec{r} ## there is a distribution of velocities. The distribution function ## f ## supplies information about how the particle velocities are distributed at this point. The velocity vectors are in a completely different space from the coordinate vectors.
 
Ok, but then how does one evaluate $$\vec{a} \cdot \nabla_v$$ in the vlasov equation? The acceleration vector is in spatial coordinates I believe.
 
Inquisitive Student said:
Ok, but then how does one evaluate $$\vec{a} \cdot \nabla_v$$ in the vlasov equation? The acceleration vector is in spatial coordinates I believe.
Acceleration ## \vec{a}=\vec{F}/m ## , and the vector ## \vec{F } ## is usually replaced by the electromagnetic force ## q(\vec{E}+\vec{v} \times \vec{B}) ##.
 
Last edited:

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
4
Views
625
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
834
  • · Replies 2 ·
Replies
2
Views
2K