How to Extend These Vectors to a Basis in $\mathbb{R}^4$?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Basis Vectors
Click For Summary

Discussion Overview

The discussion revolves around extending a set of vectors in $\mathbb{R}^4$ to form a basis. Participants analyze the linear independence of the vectors $v_1$, $v_2$, and $v_3$, considering different cases based on the parameter $t$. The scope includes mathematical reasoning and exploration of linear algebra concepts.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant presents vectors $v_1$, $v_2$, and $v_3$ and performs row reduction to determine linear independence, concluding that for $t \neq 1$, the vectors are linearly independent.
  • Another participant suggests that for $t = 1$, the vectors are dependent, leading to a different maximal linearly independent subset.
  • A correction is made regarding a typo in the definition of $v_1$, which changes the analysis of linear independence.
  • One participant proposes that for $t \neq 1$, the entire set of vectors can be considered a maximal linearly independent subset.
  • Another participant discusses the need to extend the vectors to a basis and presents a method involving row-echelon form, suggesting the addition of a zero vector.
  • There is a suggestion to use column echelon form instead, with a participant demonstrating how to achieve this and identifying the independent vectors based on the value of $t$.
  • Participants express uncertainty about the correctness of their approaches and seek validation from others.

Areas of Agreement / Disagreement

There is no consensus on the best method to extend the vectors to a basis, and participants present competing views on the implications of different values of $t$ regarding linear independence and the formation of a basis.

Contextual Notes

Participants rely on specific assumptions about the values of $t$ and the linear independence of the vectors, which may affect the conclusions drawn. The discussion includes various mathematical manipulations that have not been universally agreed upon.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $t\in \mathbb{R}$ and the vectors $$v_1=\begin{pmatrix}
0\\
1\\
-1\\
1
\end{pmatrix}, v_2=\begin{pmatrix}
t\\
2\\
0\\
1
\end{pmatrix}, v_3=\begin{pmatrix}
2\\
2\\
2\\
0
\end{pmatrix}$$ in $\mathbb{R}^4$.

I want to determine a maximal linearly independent subset of $\{v_1, v_2, v_3\}$ and to extend these to a basis of $\mathbb{R}^4$.
I have done the following:
$$\begin{pmatrix}
0 & t & 2 \\
1 & 2 & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
-1 & 0 & 2 \\
1 & 1 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 0 & 2t-2 \\
0 & 0 & 0
\end{pmatrix}$$

If $t\neq 1$ we get the following system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ t\lambda_2+2\lambda_3=0 \\ (2t-2)\lambda_3=0$$
So, $\lambda_1=\lambda_2=\lambda_3=0$ and so the vectors are linearly independent.

If $t=1$ we get the system: $$\lambda_1+2\lambda_2+2\lambda_3=0 \\ \lambda_2+2\lambda_3=0=0$$
So, $(\lambda_1, \lambda_2, \lambda_3)=\lambda_3 (2, -2, 1), \lambda_3\in \mathbb{R}$.
Therefore, $v_3=-2v_1+2v_2$ and $v_1$ and $v_2$ are linearly independent. Is everything correct so far? (Wondering)

So do we get a different maximal linearly independent subset for $t=1$ and a different for $t\neq 1$ ? (Wondering) So, do we have to take cases for $t$ to extend the vectors to a basis? (Wondering)
 
Physics news on Phys.org
Or, since we are looking for the maximal linearly independent subset of $\{v_1,v_2,v_3\}$, we take the case $t\neq 1$, because then the linearly independent subset is the whole set? (Wondering)
 
There is a typo at the first post...

The vectors are\begin{equation*}v_1=\begin{pmatrix}
0\\
1\\
-1\\
t
\end{pmatrix}, v_2=\begin{pmatrix}
t\\
2\\
0\\
1
\end{pmatrix}, v_3=\begin{pmatrix}
2\\
2\\
2\\
0
\end{pmatrix}\end{equation*} in $\mathbb{R}^4$.

We have the following:
\begin{align*}&\begin{pmatrix}
0 & t & 2 \\
1 & 2 & 2 \\
-1 & 0 & 2 \\
t & 1 & 0
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 2 & 4 \\
t & 1 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 1-2t & -2t
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & t & 2 \\
0 & 1 & 2 \\
0 & 2t & 2+2t
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & t & 2 \\
0 & t & 1+t
\end{pmatrix}\\ &\overset{ t\neq 1}{\rightarrow } \begin{pmatrix}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & t & 2 \\
0 & 0 & t-1
\end{pmatrix}\rightarrow \begin{pmatrix}
1 & 2 & 2 \\
0 & 1 & 2 \\
0 & 0 & t-1 \\
0 & 0 & 0
\end{pmatrix}\end{align*} So, for $t\neq 1$ the $3$ vectors are linearly independent.

For $t=1$ we get fpr example $v_3=-2v_1+2v_2$, where $v_1$ and $v_2$ are linearly independent.

About extending the basis I have done the following:
When $t\neq 1$ :
We need one more vector. We write the given vectors as lilnes of a matrix and we add also a zero line:
\begin{equation*}\begin{pmatrix}
0 &
1&
-1 &
t
\\ t& 2& 0& 1 \\ 2&
2&
2&
0\\ 0&0&0&0
\end{pmatrix}\end{equation*}We have to bring the matrix into a row-echelon form \begin{equation*}\begin{pmatrix}
2 &
2&
2 & 0
\\ 0& 1& -1&t \\ 0 &
0&
4-4t&
2t^2-4t+2\\ 0&0&0&0
\end{pmatrix}\end{equation*}At the diagonals we write the element $1$ :
\begin{equation*}\begin{pmatrix}
2 &
2&
2 & 0
\\ 0& 1& -1&t \\ 0 &
0&
4-4t&
2t^2-4t+2\\ 0&0&0&1
\end{pmatrix}\end{equation*}

So, the vectors \begin{equation*}\begin{pmatrix}
0 \\
1\\
-1 \\ t\end{pmatrix}, \begin{pmatrix}
t\\ 2\\ 0\\ 1 \end{pmatrix} , \begin{pmatrix} 2 \\
2\\
2\\
0\end{pmatrix}, \begin{pmatrix}0\\ 0\\ 0\\ 1
\end{pmatrix}\end{equation*} form a basis.

Is this correct? (Wondering)
 
Hey mathmari! (Smile)

Let's bring the matrix in column echelon form instead of row echelon form. (Thinking)

$$\begin{array}{}
\quad \times \quad \phantom{0} \quad -t \\
\begin{pmatrix}
1 & 0 & t \\
1 & 1 & 2 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{pmatrix} \to
\end{array}

\begin{array}{}
\quad \phantom{0} \quad \times \quad t-2 \\
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 2-t \\
1 & -1 & -t \\
0 & 1 & 1
\end{pmatrix} \to
\end{array}

\begin{array}{}
\phantom{0} \\
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -1 & -2(t-1) \\
0 & 1 & t-1
\end{pmatrix}
\end{array}
$$

The columns are now our independent vectors.
For $t=1$ the third column is the 0 vector, showing that we have a dependent set, and furthermore the first 2 columns form an independent basis.
For $t\ne 1$, the third column is an independent vector with non-zero entries in the 3rd and 4th rows.

That means we can complete the basis by adding a 4th column that completes the column echelon form:
$$
\to\left(\begin{array}{ccc|c}
1 & 0 & 0 & 0\\
1 & 1 & 0 & 0\\
1 & -1 & -2(t-1) & 0 \\
0 & 1 & t-1 & 1
\end{array}\right)
$$

So indeed, we can pick \begin{pmatrix}0\\0\\0\\1\end{pmatrix} as the 4th basis vector. (Happy)
 
Ah ok... Thank you very much! (Smile)
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 23 ·
Replies
23
Views
2K