How to find a solution to this linear ODE?

Click For Summary
SUMMARY

The forum discussion centers on solving the linear ordinary differential equation (ODE) given by $$ \frac{d \bar h}{dt} + \frac{K}{S_s} \alpha^2 \bar h = -\frac{K}{S_s} \alpha H h_b(t) $$ using the integrating factor method. The integrating factor is defined as $$ I=\exp^{\int \frac{1}{D} \alpha^2 dt} $$, with the relationship $$ \frac{K}{S_s} = \frac{1}{D} $$ established. The solution process involves several steps, ultimately leading to the expression for $$ \bar h $$, which is correctly derived but lacks clarity in notation and initial conditions.

PREREQUISITES
  • Understanding of ordinary differential equations (ODEs)
  • Familiarity with integrating factor method
  • Knowledge of exponential functions and their properties
  • Basic concepts of Fourier transforms
NEXT STEPS
  • Review the integrating factor method for solving linear ODEs
  • Study the implications of initial conditions in ODE solutions
  • Explore the application of Fourier transforms in differential equations
  • Learn about the significance of constants in differential equations
USEFUL FOR

Mathematicians, engineers, and students studying differential equations, particularly those interested in applying the integrating factor method to linear ODEs.

Atr cheema
Messages
67
Reaction score
0
I want to find solution to following ODE
$$ \frac{d \bar h}{dt} + \frac{K}{S_s} \alpha^2 \bar h = -\frac{K}{S_s} \alpha H h_b(t) $$
I have solved it with integrating factor method with ## I=\exp^{\int \frac{1}{D} \alpha^2 dt} ## as integrating factor and ##\frac{K}{S_s} = \frac{1}{D} ##

I have tried to solve it with following steps
$$
I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h = -I \frac{1}{D} \alpha H h_b(t)
\\
I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h= -I \frac{1}{D} \alpha H h_b(t)
\\
\frac{d \bar h}{dt} \exp^{\frac{1}{D} \alpha^2 dt} + \frac{1}{D} \alpha^2 \bar h \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}
\\
\frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}
\\
\int_0^t \frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = \int_0^t - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h I = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau} \exp^{- \int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau - \int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 \int d \tau - \int dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 ( \tau - t)} dt\\
$$

Can someone please review whether I have solved it correctly or not?
 
Physics news on Phys.org
Are K, S and ##\alpha## constant or do they depend on t?

Thanks.
 
Gene Naden said:
Are K, S and ##\alpha## constant or do they depend on t?

Thanks.
A, K and H are constand and ##\alpha## comes from Fourier transform.
 
The third equation seems wrong; you wrote:
##\frac{d \bar h}{dt} \exp^{\frac{1}{D} \alpha^2 dt} + \frac{1}{D} \alpha^2 \bar h \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}
\\##
The first term should be, I believe:
##\frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt}##
 
Atr cheema said:
I want to find solution to following ODE
$$ \frac{d \bar h}{dt} + \frac{K}{S_s} \alpha^2 \bar h = -\frac{K}{S_s} \alpha H h_b(t) $$
I have solved it with integrating factor method with ## I=\exp^{\int \frac{1}{D} \alpha^2 dt} ## as integrating factor and ##\frac{K}{S_s} = \frac{1}{D} ##

I have tried to solve it with following steps
$$
I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h = -I \frac{1}{D} \alpha H h_b(t)
\\
I \frac{d \bar h}{dt} + I \frac{1}{D} \alpha^2 \bar h= -I \frac{1}{D} \alpha H h_b(t)
\\
\frac{d \bar h}{dt} \exp^{\frac{1}{D} \alpha^2 dt} + \frac{1}{D} \alpha^2 \bar h \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}
\\
\frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt}
\\
\int_0^t \frac{d \bar h}{dt} \exp^{\int \frac{1}{D} \alpha^2 dt} = \int_0^t - \frac{1}{D} \alpha H h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h I = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau} \exp^{- \int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\int \frac{1}{D} \alpha^2 d \tau - \int \frac{1}{D} \alpha^2 dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 \int d \tau - \int dt} dt
\\
\bar h = - \frac{1}{D} \alpha H \int_0^t h_b(t) \exp^{\frac{1}{D} \alpha^2 ( \tau - t)} dt\\
$$

Can someone please review whether I have solved it correctly or not?
Your writing of these equations leaves a lot to be desired, especially the lack of proper use of parentheses. However, it seems to me your result is correct, except for not including the initial condition (unless h = 0 at t = 0).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
994
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K